We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hallucinations are common and distressing symptoms in Parkinson’s disease (PD). Treatment response in clinical trials is measured using validated questionnaires, including the Scale for Assessment of Positive Symptoms-Hallucinations (SAPS-H) and University of Miami PD Hallucinations Questionnaire (UM-PDHQ). The minimum clinically important difference (MCID) has not been determined for either scale. This study aimed to estimate a range of MCIDs for SAPS-H and UM-PDHQ using both consensus-based and statistical approaches.
Methods
A Delphi survey was used to seek opinions of researchers, clinicians, and people with lived experience. We defined consensus as agreement ≥75%. Statistical approaches used blinded data from the first 100 PD participants in the Trial for Ondansetron as Parkinson’s Hallucinations Treatment (TOP HAT, NCT04167813). The distribution-based approach defined the MCID as 0.5 of the standard deviation of change in scores from baseline at 12 weeks. The anchor-based approach defined the MCID as the average change in scores corresponding to a 1-point improvement in clinical global impression-severity scale (CGI-S).
Results
Fifty-one researchers and clinicians contributed to three rounds of the Delphi survey and reached consensus that the MCID was 2 points on both scales. Sixteen experts with lived experience reached the same consensus. Distribution-defined MCIDs were 2.6 points for SAPS-H and 1.3 points for UM-PDHQ, whereas anchor-based MCIDs were 2.1 and 1.3 points, respectively.
Conclusions
We used triangulation from multiple methodologies to derive the range of MCID estimates for the two rating scales, which was between 2 and 2.7 points for SAPS-H and 1.3 and 2 points for UM-PDHQ.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) has high morbidity and mortality in older adults and people with dementia. Infection control and prevention measures potentially reduce transmission within hospitals.
Aims
We aimed to replicate our earlier study of London mental health in-patients to examine changes in clinical guidance and practice and associated COVID-19 prevalence and outcomes between COVID-19 waves 1 and 2 (1 March to 30 April 2020 and 14 December 2020 to 15 February 2021).
Method
We collected the 2 month period prevalence of wave 2 of COVID-19 in older (≥65 years) in-patients and those with dementia, as well as patients’ characteristics, management and outcomes, including vaccinations. We compared these results with those of our wave 1 study.
Results
Sites reported that routine testing and personal protective equipment were available, and routine patient isolation on admission occurred throughout wave 2. COVID-19 infection occurred in 91/358 (25%; 95% CI 21–30%) v. 131/344, (38%; 95% CI 33–43%) P < 0.001 in wave 1. Hospitals identified more asymptomatic carriers (26/91; 29% v. 16/130; 12%) and fewer deaths (12/91; 13% v. 19/131; 15%; odds ratio = 0.92; 0.37–1.81) compared with wave 1. The patient vaccination uptake rate was 49/58 (85%).
Conclusions
Patients in psychiatric in-patient settings, mostly admitted without known SARS-CoV-2 infection, had a high risk of infection compared with people in the community but lower than that during wave 1. Availability of infection control measures in line with a policy of parity of esteem between mental and physical health appears to have lowered within-hospital COVID-19 infections and deaths. Cautious management of vulnerable patient groups including mental health patients may reduce the future impact of COVID-19.
In the treatment of psychosis, agitation and aggression in Alzheimer's disease, guidelines emphasise the need to ‘use the lowest possible dose’ of antipsychotic drugs, but provide no information on optimal dosing.
Aims
This analysis investigated the pharmacokinetic profiles of risperidone and 9-hydroxy (OH)-risperidone, and how these related to treatment-emergent extrapyramidal side-effects (EPS), using data from The Clinical Antipsychotic Trials of Intervention Effectiveness in Alzheimer's Disease study (Clinicaltrials.gov identifier: NCT00015548).
Method
A statistical model, which described the concentration–time course of risperidone and 9-OH-risperidone, was used to predict peak, trough and average concentrations of risperidone, 9-OH-risperidone and ‘active moiety’ (combined concentrations) (n = 108 participants). Logistic regression was used to investigate the associations of pharmacokinetic biomarkers with EPS. Model-based predictions were used to simulate the dose adjustments needed to avoid EPS.
Results
The model showed an age-related reduction in risperidone clearance (P < 0.0001), reduced renal elimination of 9-OH-risperidone (elimination half-life 27 h), and slower active moiety clearance in 22% of patients, (concentration-to-dose ratio: 20.2 (s.d. = 7.2) v. 7.6 (s.d. = 4.9) ng/mL per mg/day, Mann–Whitney U-test, P < 0.0001). Higher trough 9-OH-risperidone and active moiety concentrations (P < 0.0001) and lower Mini-Mental State Examination (MMSE) scores (P < 0.0001), were associated with EPS. Model-based predictions suggest the optimum dose ranged from 0.25 mg/day (85 years, MMSE of 5), to 1 mg/day (75 years, MMSE of 15), with alternate day dosing required for those with slower drug clearance.
Conclusions
Our findings argue for age- and MMSE-related dose adjustments and suggest that a single measure of the concentration-to-dose ratio could be used to identify those with slower drug clearance.
Hippocampal neurogenesis continues throughout adult life and potentially plays a crucial role in mood and cognitive disorders. We summarise the preclinical insights and potential translational steps that could be taken to investigate the role and importance of this phenomenon in disease and health in humans.