We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $p \geq 5$ be a prime number, and let $G = {\mathrm {SL}}_2(\mathbb {Q}_p)$. Let $\Xi = {\mathrm {Spec}}(Z)$ denote the spectrum of the centre Z of the pro-p Iwahori–Hecke algebra of G with coefficients in a field k of characteristic p. Let $\mathcal {R} \subset \Xi \times \Xi $ denote the support of the pro-p Iwahori ${\mathrm {Ext}}$-algebra of G, viewed as a $(Z,Z)$-bimodule. We show that the locally ringed space $\Xi /\mathcal {R}$ is a projective algebraic curve over ${\mathrm {Spec}}(k)$ with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset U of $\Xi /\mathcal {R}$, we construct a stable localising subcategory $\mathcal {L}_U$ of the category of smooth k-linear representations of G.
We develop a dimension theory for coadmissible $\widehat {\mathcal {D}}$-modules on rigid analytic spaces and study those which are of minimal dimension, in analogy to the theory of holonomic $\mathcal {D}$-modules in the algebraic setting. We discuss a number of pathologies contained in this subcategory (modules of infinite length, infinite-dimensional fibres). We prove stability results for closed immersions and the duality functor, and show that all higher direct images of integrable connections restricted to a Zariski open subspace are coadmissible of minimal dimension. It follows that the local cohomology sheaves $\underline {H}^{i}_Z(\mathcal {M})$ with support in a closed analytic subset $Z$ of $X$ are also coadmissible of minimal dimension for any integrable connection $\mathcal {M}$ on $X$.
Using Beilinson–Bernstein localisation, we give another proof of Levasseur's theorem on the Krull dimension of the enveloping algebra of a complex semisimple Lie algebra. The proof also extends to the case of affinoid enveloping algebras.
Let $H$ be a torsion-free compact $p$-adic analytic group whose Lie algebra is split semisimple. We show that the quotient skewfield of fractions of the Iwasawa algebra $\varLambda_H$ of $H$ has trivial centre and use this result to classify the prime $c$-ideals in the Iwasawa algebra $\varLambda_G$ of $G:=H\times\mathbb{Z}_p$. We also show that a finitely generated torsion $\varLambda_G$-module having no non-zero pseudo-null submodule is completely faithful if and only if it is has no central torsion. This has an application to the study of Selmer groups of elliptic curves.
We study the prime ideal structure of the Iwasawa algebra $\Lambda_G$ of an almost simple compact $p$-adic Lie group $G$. When the Lie algebra of $G$ contains a copy of the two-dimensional non-abelian Lie algebra, we show that the prime ideal structure of $\Lambda_G$ is somewhat restricted. We also provide a potential example of a prime c-ideal of $\Lambda_G$ in the case when the Lie algebra of $G$ is ${\frak s}{\frak l}_2(\mathbb{Q}p)$.
Let $G$ be a compact $p$-adic analytic group and let $\Lambda_G$ be its completed group algebra with coefficient ring the $p$-adic integers $\mathbb{Z}_p$. We show that the augmentation ideal in $\Lambda_G$ of a closed normal subgroup $H$ of $G$ is localisable if and only if $H$ is finite-by-nilpotent, answering a question of Sujatha. The localisations are shown to be Auslander-regular rings with Krull and global dimensions equal to dim $H$. It is also shown that the minimal prime ideals and the prime radical of the $\mathbb{F}_p$-version $\Omega_G$ of $\Lambda_G$ are controlled by $\Omega_{\Delta^+}$, where $\Delta^+$ is the largest finite normal subgroup of $G$. Finally, we prove a conjecture of Ardakov and Brown [1].