Composition operators Cτ between Orlicz spaces Lϕ (Ω, Σ, μ) generated by measurable and nonsingular transformations τ from Ω into itself are considered. We characterize boundedness and compactness of the composition operator between Orlicz spaces in terms of properties of the mapping τ, the function ϕ and the measure space (Ω, Σ, μ). These results generalize earlier results known for Lp-spaces.