We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ultrafast optical probing is a widely used method of underdense plasma diagnostic. In relativistic plasma, the motion blur limits spatial resolution in the direction of motion. For many high-power lasers the initial pulse duration of 30–50 fs results in a 10–15 μm motion blur, which can be reduced by probe pulse post-compression. Here we used the compression after compressor approach [Phys.-Usp. 62, 1096 (2019); JINST 17 P07035 (2022)], where spectral broadening is performed in thin optical plates and is followed by reflections from negative-dispersion mirrors. Our initially low-intensity probe beam was down-collimated for a more efficient spectral broadening and higher probe-to-self-emission intensity ratio. The setup is compact, fits in a vacuum chamber and can be implemented within a short experimental time slot. We proved that the compressed pulse retained the high quality necessary for plasma probing.
To classify the clinical characteristics of ocular toxocariasis in Japan, the prevalence of antibodies to Toxocara antigens was examined in patients with uveitis of unknown aetiology. From 1982 to 1993, serum specimens of 383 cases and intraocular fluid samples of 22 cases were serologically screened for Toxocara infection with five immunodiagnostic tests. Fifty-five sera and 11 intravitreous fluid samples were estimated to have significantly high antibody levels against larval excretory–secretory (ES) antigens of T. canis. Eight cases were positive in both serum and vitreous fluid, and three were positive only in the vitreous fluid. Among the 58 antibody positive samples, 20 cases were omitted due to a lack of detailed description of ocular findings. The remaining 38 cases are described in this study. Of these 38 cases, 34 (89%) were older than 20 years of age. Ocular lesions were located in the posterior fundus in 11 cases, in the peripheral fundus in 18 cases, and in both areas in seven cases. Of the eight cases in which papillary oedema or redness was observed, chorioretinal lesions were also present in seven of them. Tractional retinal detachment was present in five cases. These observations suggest that ocular toxocariasis in Japan has a different clinical profile compared with those in the other countries, and indicate a need for revised classification of ocular toxocariasis.
Tight focusing with very small f-numbers is necessary to achieve the highest at-focus irradiances. However, tight focusing imposes strong demands on precise target positioning in-focus to achieve the highest on-target irradiance. We describe several near-infrared, visible, ultraviolet and soft and hard X-ray diagnostics employed in a ∼1022 W/cm2 laser–plasma experiment. We used nearly 10 J total energy femtosecond laser pulses focused into an approximately 1.3-μm focal spot on 5–20 μm thick stainless-steel targets. We discuss the applicability of these diagnostics to determine the best in-focus target position with approximately 5 μm accuracy (i.e., around half of the short Rayleigh length) and show that several diagnostics (in particular, 3$\omega$ reflection and on-axis hard X-rays) can ensure this accuracy. We demonstrated target positioning within several micrometers from the focus, ensuring over 80% of the ideal peak laser intensity on-target. Our approach is relatively fast (it requires 10–20 laser shots) and does not rely on the coincidence of low-power and high-power focal planes.
This study aimed to clarify the association between both hypoxia-inducible factor-1α and glucose transporter type-1 expression and survival outcome in advanced pharyngeal cancer without human papillomavirus infection.
Method
Twenty-five oropharyngeal and 55 hypopharyngeal cancer patients without human papillomavirus infection were enrolled. All patients had stage III–IV lesions and underwent concurrent chemoradiotherapy or surgery. Hypoxia-inducible factor-1α and glucose transporter type-1 expression were investigated in primary lesions by immunohistochemistry.
Results
There were 41 and 39 cases with low and high hypoxia-inducible factor-1α expression, and 28 and 52 cases with low and high glucose transporter type-1 expression, respectively. There was no significant correlation between hypoxia-inducible factor-1α and glucose transporter type-1 expression. In univariate analysis, nodal metastasis, clinical stage and high hypoxia-inducible factor-1α expression, but not glucose transporter type-1 expression, predicted significantly worse prognosis. In multivariate analysis, hypoxia-inducible factor-1α overexpression was significantly correlated with poor overall survival, disease-specific survival and recurrence-free survival.
Conclusion
High hypoxia-inducible factor-1α expression was an independent risk factor for poor prognosis for advanced human papillomavirus-unrelated pharyngeal cancer.
Preoperative enteric screening for extended-spectrum β-lactamase (ESBL)–producing Enterobacteriaceae was conducted in 360 patients prospectively observed for surgical site infection (SSI). ESBL colonization (adjusted odds ratio [aOR], 2.4) and dirty wound classification (aOR, 3.6) were associated with SSI; no association between carbapenem prophylaxis and reduction in SSI was detected.
The interaction of femtosecond ultra-intense laser pulses with clusters increases absorption of the incident laser light compared with the interaction with solid targets and leads to enhanced generation of different quantum beams with unique parameters. Future investigations of such interaction urgently need detailed modeling and optimization of cluster parameters, for instance, in order to obtain the clusters with desired size, or some specific spatial configuration of the target etc. A numerical model of gas-cluster targets production by the nozzle flows of gases and binary mixtures is presented. Some previous results of the model utilization are summarized, and some new results are given. Techniques of experimental verification of the numerical results are discussed.
In temperate zones, human respiratory syncytial virus (HRSV) outbreaks typically occur in cold weather, i.e. in late autumn and winter. However, recent outbreaks in Japan have tended to start during summer and autumn. This study examined associations of meteorological conditions with the numbers of HRSV cases reported in summer in Japan. Using data from the HRSV national surveillance system and national meteorological data for summer during the period 2007–2014, we utilized negative binomial logistic regression analysis to identify associations between meteorological conditions and reported cases of HRSV. HRSV cases increased when summer temperatures rose and when relative humidity increased. Consideration of the interaction term temperature × relative humidity enabled us to show synergistic effects of high temperature with HRSV occurrence. In particular, HRSV cases synergistically increased when relative humidity increased while the temperature was ⩾28·2 °C. Seasonal-trend decomposition analysis using the HRSV national surveillance data divided by 11 climate divisions showed that summer HRSV cases occurred in South Japan (Okinawa Island), Kyushu, and Nankai climate divisions, which are located in southwest Japan. Higher temperature and higher relative humidity were necessary conditions for HRSV occurrence in summer in Japan. Paediatricians in temperate zones should be mindful of possible HRSV cases in summer, when suitable conditions are present.
It is now firmly established that a small anisotropy of the galactic cosmic rays exists, observable from Earth as a variation of intensity in sidereal time. The problem now is to determine more clearly the characteristics of the anisotropy and, in particular, its detailed spatial structure and how it depends upon the energy and composition of the cosmic rays. This is a very difficult task and, in the final analysis, may not be fully achievable from Earth-based observations. The purpose of the present paper is to describe briefly an installation now operating in Tasmania to provide further information on the spatial structure of the anisotropy.
To determine the characteristics of acute phase nystagmus in patients with cerebellar lesions, and to identify a useful indicator for differentiating central lesions from peripheral lesions.
Methods:
Acute phase nystagmus and the appearance of neurological symptoms were retrospectively investigated in 11 patients with cerebellar stroke.
Results:
At the initial visit, there were no patients with vertical nystagmus, direction-changing gaze evoked nystagmus or pure rotatory nystagmus. There were four cases with no nystagmus and seven cases with horizontal nystagmus at the initial visit. There were no neurological symptoms, except for vertigo and hearing loss, in any cases at the initial visit. The direction and type of nystagmus changed with time, and neurological symptoms other than vertigo appeared subsequently to admission.
Conclusion:
It is important to observe the changes in nystagmus and other neurological findings for the differential diagnosis of central lesions.
Convallariamajalis has double dormancy and hypogeal germination, but no information is available on embryo growth or on the effects of light and gibberellic acid (GA3) on germination in this genus. Therefore, we investigated embryo growth and other germination features in seeds of C. keiskei and compared the data with those of Trillium camschatcense in another study. Until now, in seeds with double dormancy, embryo growth and germination (epigeal) have been studied in detail only for seeds of T. camschatcense. Phenology of embryo growth and emergence of cotyledonary petiole/root (hereafter root) and shoot in seeds of C. keiskei were monitored outdoors. Effects of temperature, light and GA3 on embryo growth and root and shoot emergence were tested under laboratory conditions. Roots emerged the first spring following seed dispersal in autumn. The embryo grew soon after root emergence, and germination was hypogeal. Seeds with an emerged root formed buds from which a shoot (leaf) emerged above ground during the second spring. Alternating temperatures and light had negative effects on root emergence, and GA3 did not substitute for cold stratification in root emergence. Seeds of C. keiskei have double dormancy, but it differs from that in T. camschatcense. Based on differences in embryo growth before (T. camschatcense) versus after (C. keiskei) root emergence, and on epigeal (T. camschatcense) versus hypogeal (C. keiskei) germination, we suggest that two types of deep simple double morphophysiological dormancy (MPD) be recognized. Since embryo growth in C. keiskei does not fit the standard definition of MPD, we propose to expand this definition.
Using American bullfrog models under normal conditions and under vestibular dysfunction, we investigated whether mechanical vibration applied to the ear could induce otoconial dislodgement.
Methods:
Vibration was applied to the labyrinth of the bullfrog using a surgical drill. The time required for the otoconia to dislodge from the utricular macula was measured. Vestibular dysfunction models were created and the dislodgement time was compared with the normal models. The morphology of the utricular macula was also investigated.
Results:
In the normal models, the average time for otoconial dislodgement to occur was 7 min and 36 s; in the vestibular dysfunction models, it was 2 min and 11 s. Pathological investigation revealed that the sensory hairs of the utricle were reduced in number and that the sensory cells became atrophic in the vestibular dysfunction models.
Conclusion:
The otoconia of the utricle were dislodged into the semicircular canal after applying vibration. The time to dislodgement was significantly shorter in the vestibular dysfunction models than in the normal models; the utricular macula sustained significant morphological damage.
To examine the clinical features, age and gender distribution of patients, treatment methods, and outcomes of benign paroxysmal positional vertigo.
Methods:
This paper reports a review of 357 patients treated for this condition at a single institution over a duration of 5 years. Patients with posterior canal benign paroxysmal positional vertigo were divided into two groups: one group underwent the Epley manoeuvre and the other received medication. The lateral canal canalolithiasis patients were also divided into two groups: one underwent the Lempert manoeuvre and the other received medication. Lastly, the lateral canal cupulolithiasis patients were treated with medication and non-specific physical techniques.
Results and conclusion:
For patients with posterior canal benign paroxysmal positional vertigo, resolution time was significantly shorter in the Epley manoeuvre group than in the medication group. For the lateral canal canalolithiasis patients, resolution time was significantly shorter in the Lempert manoeuvre group than in the medication group. Resolution time was significantly longer in the lateral canal cupulolithiasis patients than in the other patients. The average age of patients increased with the number of recurrences, as did predominance in females. Average age and rate of sensorineural hearing loss were significantly higher in patients with intractable benign paroxysmal positional vertigo compared with those in the curable benign paroxysmal positional vertigo group.
A discharge-emission spectrometer and a cavity ringdown spectrometer have been developed to aid in the solution to the diffuse interstellar band (DIB) problem. A hollow cathode was used to generate molecular ions in a discharge because it has been suggested that molecular ions are probable DIB candidates. The discharge was produced by a pulsed voltage of 1300–1500 V. A wide wavelength range of optical emission from the discharge was examined by a HORIBA Jobin Yvon iHR320 monochromator. The dispersed discharge emission was detected by a photomultiplier and was recorded via a lock-in amplifier. The 2B3u–X2B2g electronic transition of the butatriene cation H2CCCCH2+ was observed in the discharge emission of 2-butyne H3CCCCH3. The frequency of the electronic transition was measured to be 20381 cm−1, and a comparison study was made with known DIB spectra.
The resolution of the discharge-emission spectrometer is insufficient to make precise comparisons between laboratory frequencies and astronomically observed DIB spectra. We therefore developed the cavity ringdown spectrometer using the same hollow cathode. The high sensitivity of this spectrometer was confirmed by the observation of the forbidden band of O2.
To investigate what kinds of stimuli are effective in detaching otoconia from the cupula in three experimental models of cupulolithiasis.
Methods:
Three experimental models of cupulolithiasis were prepared using bullfrog labyrinths. Three kinds of stimuli were applied to the experimental models. In experiment one (gravity), the labyrinth preparation was placed so that the cupula-to-crista axis was in the horizontal plane with the canal side in the downward position. In experiment two (sinusoidal oscillation), the labyrinth preparation was placed 3 cm from the rotational centre of a turntable, which was sinusoidally rotated with a rotational cycle of 1 Hz and a rotational angle of 30°. In experiment three (vibration), mechanical vibration was applied to the surface of the bony capsule around the labyrinth using a surgical drill.
Results:
In experiments one, two and three, the otoconial mass was respectively detached in 2 out of 10 labyrinth preparations, none of the labyrinth preparations, and all of the labyrinth preparations.
Conclusion:
Vibration was the most effective stimulus for detaching the otoconia from the cupula in these experimental models of cupulolithiasis.
Mucosal mast cells (MMC) play a crucial role in the expulsion of Strongyloides ratti adults from the small intestine of mice. We reported the large intestinal parasitism of S. ratti in rats, and there has been no report on MMC in the large intestine of the natural host. We studied kinetics of MMC, together with eosinophils, in the upper and lower small intestines, caecum and colon of infected rats. Two distinct phases of mastocytosis were revealed: one in the upper small intestine triggered by stimulation of ‘ordinary’ adults, and the other in the colon stimulated by ‘immune-resistant’ adults that started parasitizing the colon around 19 days post-infection. In all 4 intestinal sites, the MMC peaks were observed 5–7 days after the number of adult worms became the maximum and the height of MMC peaks appeared to be dependent on the number of parasitic adults, suggesting an important role played by worms themselves in the MMC buildup.
Radiocarbon analysis of the carbonaceous aerosol allows an apportionment of fossil and non-fossil sources of airborne particulate matter (PM). A chemical separation of total carbon (TC) into its subtractions organic carbon (OC) and elemental carbon (EC) refines this powerful technique, as OC and EC originate from different sources and undergo different processes in the atmosphere. Although 14C analysis of TC, EC, and OC has recently gained increasing attention, interlaboratory quality assurance measures have largely been missing, especially for the isolation of EC and OC. In this work, we present results from an intercomparison of 9 laboratories for 14C analysis of carbonaceous aerosol samples on quartz fiber filters. Two ambient PM samples and 1 reference material (RM 8785) were provided with representative filter blanks. All laboratories performed 14C determinations of TC and a subset of isolated EC and OC for isotopic measurement. In general, 14C measurements of TC and OC agreed acceptably well between the laboratories, i.e. for TC within 0.015–0.025 F14C for the ambient filters and within 0.041 F14C for RM 8785. Due to inhomogeneous filter loading, RM 8785 demonstrated only limited applicability as a reference material for 14C analysis of carbonaceous aerosols. 14C analysis of EC revealed a large deviation between the laboratories of 28–79% as a consequence of different separation techniques. This result indicates a need for further discussion on optimal methods of EC isolation for 14C analysis and a second stage of this intercomparison.
This article presents results from the first 3 rounds of an international intercomparison of measurements of Δ14CO2 in liter-scale samples of whole air by groups using accelerator mass spectrometry (AMS). The ultimate goal of the intercomparison is to allow the merging of Δ14CO2 data from different groups, with the confidence that differences in the data are geophysical gradients and not artifacts of calibration. Eight groups have participated in at least 1 round of the intercomparison, which has so far included 3 rounds of air distribution between 2007 and 2010. The comparison is intended to be ongoing, so that: a) the community obtains a regular assessment of differences between laboratories; and b) individual laboratories can begin to assess the long-term repeatability of their measurements of the same source air. Air used in the intercomparison was compressed into 2 high-pressure cylinders in 2005 and 2006 at Niwot Ridge, Colorado (USA), with one of the tanks “spiked” with fossil CO2, so that the 2 tanks span the range of Δ14CO2 typically encountered when measuring air from both remote background locations and polluted urban ones. Three groups show interlaboratory comparability within l% for ambient level Δ14CO2. For high CO2/low Δ14CO2 air, 4 laboratories showed comparability within 2%. This approaches the goals set out by the World Meteorological Organization (WMO) CO2 Measurements Experts Group in 2005. One important observation is that single-sample precisions typically reported by the AMS community cannot always explain the observed differences within and between laboratories. This emphasizes the need to use long-term repeatability as a metric for measurement precision, especially in the context of long-term atmospheric monitoring.