We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Mental Health Bill, 2025, proposes to remove autism and learning disability from the scope of Section 3 of the Mental Health Act, 1983 (MHA). The present article represents a professional and carer consensus statement that raises concerns and identifies probable unintended consequences if this proposal becomes law. Our concerns relate to the lack of clear mandate for such proposals, conceptual inconsistency when considering other conditions that might give rise to a need for detention and the inconsistency in applying such changes to Part II of the MHA but not Part III. If the proposed changes become law, we anticipate that detentions would instead occur under the less safeguarded Deprivation of Liberty Safeguards framework, and that unmanaged risks will eventuate in behavioural consequences that will lead to more autistic people or those with a learning disability being sent to prison. Additionally, there is a concern that the proposed definitional breadth of autism and learning disability gives rise to a risk that people with other conditions may unintentionally be unable to be detained. We strongly urge the UK Parliament to amend this portion of the Bill prior to it becoming law.
Bipolar disorder (BD) is a source of marked disability, morbidity, and premature death. There is a paucity of research on personalized psychosocial interventions for BD, especially in lowresource settings. A previously published pilot randomized controlled trial (RCT) of a Culturally adapted PsychoEducation (CaPE) intervention for BD in Pakistan reported higher patient satisfaction, enhanced medication adherence, knowledge and attitudes towards BD, and improvement in mood symptom scores and health-related quality of life measures compared to treatment-as-usual (TAU).
Objectives
This protocol describes a larger multicentre RCT to confirm the clinical and cost-effectiveness of CaPE in Pakistan.
Methods
A multicentre individual, parallel arm, RCT of CaPE in 300Pakistani adults with BD. Participants over the age of 18, with adiagnosis of bipolar I and II and who are currently euthymic, will berecruited from seven sites including Karachi, Lahore, Multan, Rawalpindi,Peshawar, Hyderabad and Quetta. Time to recurrence will be the primaryoutcome assessed using Longitudinal Interval Follow-up Evaluation(LIFE). Secondary measures will include mood symptomatology, qualityof life and functioning, adherence to psychotropic medications, andknowledge and attitudes towards BD.
Results
Full ethics approval has been received from National Bioethics Committee (NBC) of Pakistan and Centre for Addiction and Mental Health (CAMH), Toronto, Canada. The study has completed sixty-five screening across the seven centres, of which forty-eight participants have been randomised.
Conclusions
A successful trial will lead to rapid implementation of CaPE in clinical practice, not only in Pakistan, but also in other low-resource settings including those in high-income countries, to improve clinical outcomes, social and occupational functioning, and quality of life in South Asian and other minority patients with BD.
For 147 hospital-onset bloodstream infections, we assessed the sensitivity, specificity, positive predictive value, and negative predictive value of the National Healthcare Safety Network surveillance definitions of central-line–associated bloodstream infections against the gold standard of physician review, examining the drivers of discrepancies and related implications for reporting and infection prevention.
Bipolar disorder is a source of marked disability, morbidity and premature death. There is a paucity of research on personalised psychosocial interventions for bipolar disorder, especially in low-resource settings. A pilot randomised controlled trial (RCT) of a culturally adapted psychoeducation intervention for bipolar disorder (CaPE) in Pakistan reported higher patient satisfaction, enhanced medication adherence, knowledge and attitudes regarding bipolar disorder, and improvement in mood symptom scores and health-related quality of life measures compared with treatment as usual (TAU).
Aims
The current protocol describes a larger multicentre RCT to confirm the clinical and cost-effectiveness of CaPE in Pakistan. Trial registration: NCT05223959.
Method
A multicentre individual, parallel-arm RCT of CaPE in 300 Pakistani adults with bipolar disorder. Participants over the age of 18, with a diagnosis of bipolar I or II disorder who are currently euthymic, will be recruited from seven sites: Karachi, Lahore, Multan, Rawalpindi, Peshawar, Hyderabad and Quetta. Time to recurrence will be the primary outcome assessed using the Longitudinal Interval Follow-up Evaluation (LIFE). Secondary measures will include mood symptoms, quality of life and functioning, adherence to psychotropic medications, and knowledge and attitudes regarding bipolar disorder.
Results
This trial will assess the effectiveness of the CaPE intervention compared with TAU in reducing the time to recurrence for people with bipolar disorder currently in remission in Pakistan and determine the effect on clinical outcomes, quality of life and functioning.
Conclusions
A successful trial might lead to rapid implementation of CaPE in clinical practice, not only in Pakistan, but also in other low-resource settings, including those in high-income countries, to improve clinical outcomes, social and occupational functioning, and quality of life in South Asian and other minority group patients with bipolar disorder.
In a field study it was found that application of high P induced Zn deficiency symptoms on onion (Allium cepa L.) plants, increased P concentration but decreased that of Zn. Conversely, application of Zn tended to increase Zn concentration of both tops and bulbs and lowered P concentration. Effectiveness of Zn varied with the amount of P applied. Evidently P and Zn are mutually antagonistic. Using sub-soil on the top of raised beds and heavy P fertilization appear to be responsible for inducing Zn deficiency in onions in northern Nigeria.
The absorption and movement of 14C-labelled maleic hydrazide (2000 mg/1) and 2,4-D (250 mg/1) were studied in seedlings and mature plants of a local strain of onion (Allium cepa L.) from Kano, Nigeria, in the presence and absence of N (20 mg/1).
Plants absorbed and accumulated considerable amounts of both the chemicals. Addition of N to the treatment solution reduced the absorption of 2,4-D. Also, N reduced the mobility of the chemicals from the roots to the tops which resulted in accumulation of the chemicals in the bulbs.
We report on the integration of flowable oxide based Fresnel microlenses with AlGaN based 280 nm light emitting diodes (LED). The lenses were fabricated on the back side of the LED sapphire substrates using direct electron beam writing. Ten concentric rings with different width and variable thickness were designed for 360 degree phase correction. Within each ring the thickness was varied in five steps to approximate a linear profile. The width of each thickness step varied from 100 nm to several microns. Outer diameter of the lens was 65μm. A focal distance of 68 μm was measured for the fabricated microlenses. At the focal plane a FWHM of intensity profile as small as 14 μm was measured for lenses integrated with 30 μm diameter UV LEDs . The maximum intensity at focal plane exceeded the background radiation by a factor of 50. Comparison of the LED performance before and after the lens fabrication did not reveal any degradation of integral efficiency of devices. These results demonstrate the feasibility of using flowable oxide Fresnel microlenses in optical systems based on micro-pixel deep UV AlGaN LEDs.
The evolution of stress during the MOCVD growth of AlN thin films on sapphire substrates under both low and high temperature conditions has been evaluated. The final stress state of the films is assumed to consist of the summation of stresses from three different sources: (1) the stress which arises from residual lattice mismatch between film and substrate i.e. that which persists after partial relaxation by misfit dislocation formation. The extent of relaxation is determined from High Resolution TEM analysis of the substrate/film interface; (2) the stress arising from the coalescence of the 3D islands nucleated in this high mismatch epitaxy process. This requires knowledge of the island sizes just prior to coalescence and this was provided by AFM studies of samples grown under the conditions of interest; and (3) the stress generated during post-growth cooling which arises from the differences in thermal expansion coefficient between AlN and sapphire. The final resultant stress, comprising the summation of stresses arising from these three sources, is found to be tensile in the sample grown at lower temperature and compressive in the sample grown at higher temperature. These results are in general qualitative agreement with results of TEM and High resolution X-ray diffraction (HRXRD) studies, which show evidence for tensile and compressive stresses in the low temperature and high temperature cases, respectively.
In this paper we will describe the problems in growth and fabrication of deep UV LED devices and the approaches that we have used to grow AlGaN-based multiple quantum well deep UV LED structures and to overcome issues of doping efficiency, cracking, and slow growth rates both for the n- and the p-type layers of the device structures. Several innovations in structure growth, device structure design and fabrication and packaging have led to the fabrication of devices with emission from 250-300 nm and cw-milliwatt powers at pump currents of only 20 mA (Vf ≤ 6 V). Record wall plug efficiencies above 1.5 % are now achievable for devices with emission at 280 nm. Thermal management and a proper device design are not only key factors in achieving these record performance numbers but are also crucial to device reliability. We will also discuss some of our initial research to clarify the factors influencing the lifetime of the deep UV LEDs. In addition to our own work, we will review the results from the excellent research carried out at several other laboratories worldwide.
In this paper, we report a study of the degradation of AlGaN-based 280 nm LEDs, which were grown on sapphire substrates using migration-enhanced metalorganic chemical vapor deposition process (MEMOCVD). Electroluminescence (EL), atomic force microscopy (AFM), cathodoluminescence (CL), and scanning electron microscopy (SEM) observations showed that the degradation of deep UV LEDs generally fell into two categories: catastrophic degradation and gradual degradation. The catastrophic degradation was found to be mostly caused by the non-uniformity of surface morphology. The gradual power reduction had two characteristic time constants indicating two possible degradation mechanisms as found from temperature and bias dependent LED power degradation measurements. The faster time constant was bias dependent and virtually constant with temperature whereas the second time constant (slower) varied exponentially with junction temperature. For this temperature dependent part, the activation energies of degradation were determined to be 0.23 eV and 0.27 eV under injected current density of 100 A/cm2 and 200 A/cm2 respectively.
In this paper, using chemical etching, atomic force microscope (AFM) and High- resolution X-ray diffraction (HRXRD), we report a study of the effect of various small miscuts of (0001) sapphire substrate (<1°) and the way to further improve the material quality. A set of AlN epilayers and AlN/AlxGa1-xN Superlattices (SLs) were grown by Migration-enhanced Metalorganic Chemical Vapor Deposition (MEMOCVD) on vicinal (0001) sapphire substrates. The threading dislocation density was found to be very sensitive to the miscut angles. The etch pit density reduced to 7×106 cm-2 for normal-oriented (0°-off) from the starting value of 7×107 cm-2 for 0.5°-off. We found the surface morphologies can be easily controlled by the different substrate miscut angles. The 1-2 Monolayers (MLs) step flow morphology for normal- oriented substrate changed to step bunches of 10 MLs height for 0.5°-off substrate. Correspondingly, AFM Root Mean Square (RMS) increased from 1.52 to 9.15 Å with a 5um×5um scan. This finding may help enhance the quality of full structure UVLED material and eventually improve the lifetime of UVLEDs.
The comparative study of the DC parameters and RF power stability of nitride-based conventional HFETs and Metal-Oxide-Semiconductor HFETs (MOSHFETs) is presented. The average lifetime under DC stress is estimated to be as high as 2.5 years at room temperature. Under the large-signal RF stress, the gate leakage current of conventional HFETs increases significantly with time showing faster degradation as compared to DC stressing. MOSHFETs demonstrate superior RF performance stability, which perfectly correlates with the DC stability data. It is shown that in conventional HFETs, the combination of the self-heating and positive dynamic gate bias leads to the defect accumulation in the AlGaN barrier under the gate. In MOSHFETs, the absence of the gate leakage is a key to stable RF performance.
We investigated the recombination dynamics of the AlInGaN grown by a pulsed metal organic chemical vapor deposition (PMOCVD) by using the temperature dependent photoluminescence (PL) and time resolved photoluminescence (TRPL). The indium mole fractions of our samples are 0-3% and the PL measurement temperatures are 10-300K. The PL data show that AlInGaN layers with higher indium ratios exhibit significantly stronger PL intensities and less intensity reduction to the temperature increase. The TRPL data show that higher indium layers yield shorter lifetime in the low temperature range and longer lifetime in the high temperature range. These results indicate that the indium contents into the AlInGaN layers generate more localized states, which are likely to make the recombination processes in the AlInGaN layers less sensitive to the variation of the temperature.
Ultraviolet light emitting diodes (LED) based on GaN and its ternary alloy AlGaN are key devices for applications such as solid state white lighting and chemical sensing. Ultraviolet LEDs are prone to self-heating effects, i.e., temperature rises during operation, contributing significantly to the commonly observed saturation of light output power at relatively low input currents. Rather little, however, is known about the actual device temperature of an operating ultraviolet LED. Using micro-Raman spectroscopy temperature measurements were performed as a function of input current on 325nm-Al0.18Ga0.82N/Al0.12Ga0.88N multiple quantum wells LEDs grown on sapphire substrates, flip-chip mounted on SiC for heat-sinking. Temperature maps were recorded over the active device area. Temperature rises of about 65 °C were measured at input currents as low as 50mA (at 8V) for 200 μm x 200 μm size LEDs despite flipchip mounting the devices. Temperature rises at the device edges were found to be higher than in the device center, due to combined heat sinking and current crowding effects. Finite difference heat dissipation simulations were performed and compared to the experimental results.
The comparative study of photoluminescence (PL) dynamics of wurtzite-type GaN/AlGaN multiple quantum wells (MQWs) fabricated using low-pressure metalorganic chemical vapor deposition technique over GaN coated [0001]-sapphire (C-plane) and single crystalline [1100]-oriented freestanding GaN (M-plane) substrates is presented. The MQWs on C-plane sapphire at low excitation exhibited much lower (∼30 times) PL intensity in comparison with M-plane samples. The C-plane MQWs showed a strong excitation intensity-induced PL spectrum line blueshift (up to 140 meV). Meanwhile identical MQW structures on M-plane substrates demonstrated no PL peak shifts indicating an absence of polarization fields. At higher excitation (>50 kW/cm2) the PL intensity and spectra peak positions for both the C- and the M-plane MQWs become nearly the same and do not differ with subsequent increase of pumping. Theoretical analysis and comparison with PL experimental data revealed strong (up to ∼1.2–1.3 MV/cm) built-in electrostatic fields in the C-plane structures whereas M-plane structures are almost non-polar.
We present a study of the electrical and optical characteristics of 280 nm emission deep ultraviolet light emitting diodes (LED) at room and cryogenic temperatures. At low bias the defect assisted carrier tunneling primarily determines the current conduction. The room-temperature spectral performance and optical power are limited mostly by pronounced deep level defect assisted radiative and non-radiative recombination as well as poor electron confinement in the active region. At temperatures below 100 K the electroluminescence peak intensity increases by more than one order of magnitude due to suppression of non-radiative recombination channels indicating that with a proper device design and improved material quality, milliwatt power 280 nm LED are viable.
We report flip-chip 325 nm emission light emitting diodes over sapphire with dc powers as high as 0.84 mW at 180mA and pulse powers as high as 6.68 mW at 1A. These values to date are the highest reported powers for such short wavelength emitters. Our data shows the device output power under dc operation to be limited by the package heat dissipation. A study is presented to determine the role of thermal management in controlling the power output for the reported 325 nm ultraviolet light emitting diodes.
Gate current plays an important role in determining the characteristics and limiting performance of GaN-based field effect transistors. In GaN-based HFETs, the gate current limits the gate voltage swing and, hence, the maximum device current. Since the electron transport across the wide band gap barrier layer involves trapping, under certain bias conditions, the gate current leads to the threshold voltage shifts and causes reliability problems. Under reverse bias, the gate leakage in GaN-based HFET dominates the minimum (pinch-off) drain current. Insulating gate HFETs (i.e. Metal Oxide Heterostructure Field Effect Transistors – MOSHFETs) have the gate leakage currents 4 – 6 orders of magnitude lower than HFETs, even at elevated temperatures up to 300 °C. In this paper, we report on the gate current characteristics in these devices at room and elevated temperatures. We propose a semi-empirical model for the current-voltage characteristics in these devices, which is in good agreement with experimental data. Our data also show that both tunneling and temperature activation are important factors in MOSHFETs. These results are important for possible applications of GaN MOSHFETs in high power amplifiers and power switches as well as in non-volatile memory devices and integrated circuits that will operate in a much wider temperature range than conventional silicon and GaAs devices.
We present the results on investigation and analysis of photoluminescence (PL) dynamics of quaternary AlInGaN epilayers and AlInGaN/AlInGaN multiple quantum wells (MQWs) grown by a novel pulsed metalorganic chemical vapor deposition (PMOCVD). The emission peaks in both AlInGaN epilayers and MQWs show a blueshift with increasing excitation power density. The PL emission of quaternary samples is attributed to recombination of carriers/excitons localized at band-tail states. The PL decay time increases with decreasing emission photon energy, which is a characteristic of localized carrier/exciton recombination due to alloy disorder. The obtained properties of AlInGaN materials grown by a PMOCVD are similar to those of InGaN. This indicates that the AlInGaN system is promising for ultraviolet applications such as the InGaN system for blue light emitting diode and laser diode applications.