Drying of cells leads to damage resulting from crowding of cytoplasmic components, condensation of the nucleoid, increases in the Tm of membrane phase transitions, and imposition of stress upon cell walls. Prolonged desiccation leads to oxidation of proteins, DNA and membrane components through metal-dependent Fenton reactions, while Maillard reactions generate cross-linked products between the carbonyl groups of reducing sugars and the primary amines of nucleic acids and proteins. Although such damage restricts many organisms to aqueous environments, some, including many cyanobacteria, can tolerate the air-dried state for prolonged periods. Cyanobacteria in the Tintenstrich communities of exposed rock faces, Microcoleus and Lyngbya spp. in intertidal mats, chasmoendolithic Chroococcidiopsis spp. in the rocks of hot and cold deserts, and terrestrial epilithic crusts of Tolypothrix and Nostoc are examples that show a marked capacity to withstand the removal of their cellular water. For Nostoc commune, the mechanisms of desiccation tolerance reflect both simple and complex interactions at the structural, physiological and molecular levels.