Let
$X:\,{{\mathbb{R}}^{2}}\to \,{{\mathbb{R}}^{2}}$ be a
${{C}^{1}}$ map. Denote by
$\text{Spec}(X)$ the set of (complex) eigenvalues of
$\text{D}{{\text{X}}_{p}}$ when
$p$ varies in
${{\mathbb{R}}^{2}}$ . If there exists
$\in \,>\,0$ such that
$\text{Spec(}X)\,\bigcap \,(-\in ,\,\in )\,=\,\varnothing $ , then
$X$ is injective. Some applications of this result to the real Keller Jacobian conjecture are discussed.