We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents a compact, dual-polarized, 32-element, 47 GHz phased array transceiver, fabricated in 55 nm CMOS technology with antenna in package (AiP) technology for 5G communications. The proposed transceiver employs an intermediate frequency (IF) phase-shifting architecture and a facing-up (FU) configuration AiP. The IF phase shifting is realized using a bidirectional IF vector sum phase shifter and IQ mixer with drain bias, achieves less than 1° phase resolution, with rms phase error of 0.047° and rms amplitude error of 0.063 dB. The output third-order intercept point is above +1.0 dBm with Txconversion gain of more than 16.5 dB over the radio frequency ranges from 46 to 49 GHz. To reduce heat concentration from the high integrated phased-array transceiver, a FU AiP-fan-out wafer-level packaging utilizes solder balls mounted on the package as a heat spreader, resulting in a thermal resistance of less than 0.3 K/W. The finalized AiP size is only 12.3 mm × 14.9 mm. Regarding the over-the-air measurement, the proposed transmitter can deliver an equivalent isotropic radiated power of 30.7 dBm with single polarization and demonstrates transmitter error vector magnitude less than 3.9% under 5G NR modulation scheme (256QAM, 100 MHz bandwidth).
Discussing end-of-life (EOL) issues with patients remains challenging for health professionals. Physicians may use various expressions, including euphemistic ones, when disclosing the prognosis to their patients to reduce their psychological impact. However, the actual expressions of EOL disclosure in clinical practice are unclear. This study aims to investigate the expressions used in EOL disclosures and explore their associated factors.
Methods
A retrospective chart review was conducted enrolling all the patients who died in a university-affiliated hospital. Expressions used in the EOL disclosure were qualitatively analyzed. The patients’ participation rate and length from the discussion to death were investigated.
Results
EOL disclosures were observed in 341 of 358 patients. The expressions used by the physicians were categorized into 4 groups; Group 1: Clear presentation of life expectancy (n = 106; 31.1%), Group 2: Euphemistic presentation of life expectancy (n = 24; 7.0%), Group 3: Presentation of risk of sudden death (n = 147; 43.1%), Group 4: No mention on life expectancy (n = 64; 18.8%). The proportion of male patients was higher in Group 2 (79%) and lower in Group 4 (56%). Patients with cancer accounted for approximately 70% of Groups 1 and 4, but only approximately 30% of Group 3. The patient participation rate was highest in Group4 (84.4%), followed by Group 2 (50.0%). The median time from EOL disclosure to death was longer in Groups 1 and 4 (26 and 29.5 days, respectively), compared to Groups 2 and 3 (18.5 and 16 days, respectively).
Significance of results
A variety of expressions are used in EOL disclosure. Patterns of communication are influenced by patients’ gender and type of illness (cancer or noncancer). Euphemisms do not seem to facilitate timely disclosure of life expectancy or patient participation. For health professionals, not only devising the expressions to alleviate their patients’ distress when breaking bad news but also considering the communication process and patient background are essential.
We studied the probability distribution function of the column density (N-PDF) of molecular clouds based on a fit with a multi-log-normal function using the Nobeyama 45-m Cygnus X CO survey data. We identified 124 molecular clouds in 13CO data using the DENDROGRAM and SCIMES algorithms. The N-PDF was constructed for 11 extended (≥ 0.4 deg2) molecular clouds of these identified clouds. We found that every N-PDF is well-fitted with one or two log-normal (LN) distributions. We investigated the distributions of the column density, C18O dense cores, and radio continuum source in each cloud and found that the N-PDF was less correlated with the star-forming activity. The LN N-PDF parameters showed two impressive features. First, the LN distribution at the low-density part had the same mean column density (∼1021.5 cm−2 ) for almost all the molecular clouds. Second, the wider LN distribution tended to show the lower mean density of the structures.
The evolution of giant molecular clouds (GMCs), which are the main sites of star formation, is essential for unraveling how stars form and how galaxies evolve. We analyzed the M33 CO(J = 2–1) data with spatial resolution of 39 pc obtained by ALMA-ACA 7 m array combined with IRAM 30 m. We identified 736 GMCs and classified them into three types; Type I: associated with no Hii regions, Type II: associated with Hii regions with the Hα luminosity L(Hα) < 1037.5 erg s-1, Type III: associated with Hii regions with L(Hα) > 1037.5erg s-1. We found that mass, size, and velocity dispersion of GMCs slightly increase in the order of Type I, II, and III GMCs. Type III GMCs mainly exist in the spiral arm, while many of Type I and Type II GMCs are distributed in the inter-arm. Assuming that the star formation proceeds steadily, we roughly estimated the total GMC lifetime of 30 Myr.
OBJECTIVES/SPECIFIC AIMS: MDSCs are potent suppressors of T cell function, and have been recently found to be implicated in skin diseases driven by T cell dysregulation. However, the function of MDSCs in CLE is poorly understood. We sought to characterize the MDSC population in the peripheral blood of DLE patients and evaluate their ability to suppress autologous T cells. METHODS/STUDY POPULATION: All patients were recruited through the UT Southwestern Cutaneous Lupus Registry. PBMCs from 32 CLE patients and 16 age-matched and gender-matched controls were analyzed using flow cytometry. Monocytic MDSCs were identified by the phenotype of CD14+ HLA-DR neg/low. Furthermore, autologous MDSCs and T cells were purified from CLE PBMCs (n=4) and co-cultured at different ratios of these cells. T cell function was measured by secretion of IFN-γ by ELISA. RESULTS/ANTICIPATED RESULTS: Monocytic MDSCs in CLE PBMCs (median: 2.04%, IQR: 0.67%–5.07%) were significantly higher compared with healthy control PBMCs (median: 0.5%, IQR: 0.1%–1.07%, p=0.002). Although not significant on subset analysis, patients with CLE limited to the head and neck had the highest levels of MDSCs. CLE MDSCs (n=4) were found to suppress autologous activated T-cells in a dose-dependent manner. DISCUSSION/SIGNIFICANCE OF IMPACT: In this cross-sectional study of patients of the UT Southwestern Cutaneous Lupus Registry, we observed differences in the levels of MDSCs among PBMCs of CLE patients Versus healthy controls. CLE patients had significantly higher levels of MDSCs, which could be explained by the presence of an inflammatory state in this group. Furthermore, CLE MDSCs were able to suppress autologous T cells, showing that these cells are functionally patent in CLE blood. Their up-regulation in CLE blood may represent the body’s response to limiting disease severity, since most patients had mild disease activity.
We formulate and conduct the time-integration of time evolution equation for the giant molecular cloud mass function (GMCMF) including the cloud-cloud collision (CCC) effect. Our results show that the CCC effect is only limited in the massive-end of the GMCMF and indicate that future high resolution and sensitivity radio observations may constrain giant molecular cloud (GMC) timescales by observing the GMCMF slope in the lower mass regime.
Although there are numerous reports on the synthesis of spherical materials, the development of new approaches remains important for theory construction to realize tailor-made synthesis of spherical materials. Herein, we report the synthesis of polydispersed spherical particles of H2Ti2O5 intercalated with a polyethyleneamine, such as an ethylenediamine, on the basis of a solvothermal treatment using concentrated polyethyleneamine aqueous solutions. The diameter of the micrometer-sized spheres enlarged with increasing amine concentration in the reaction solution. It was speculated that high ionic strength caused the self-assembly of polyethyleneamine-intercalated H2Ti2O5, resulting in the formation of spherical agglomerates. The spheres had a specific a surface area of 200 m2 g−1 and approximately 5 nm pores, and these values were controlled by amine concentration and treatment time. Conversion to single phase anatase and rutile without changes in spherical morphology was achieved by heat treatment. The present approach may assist with the design morphology of agglomerates.
We discuss an overall picture of star formation in the Galaxy. Recent high-resolution magneto-hydrodynamical simulations of two-fluid dynamics with cooling/heating and thermal conduction have shown that the formation of molecular clouds requires multiple episodes of supersonic compression. This finding enables us to create a new scenario of molecular cloud formation through interacting shells or bubbles on galactic scales. We estimate the ensemble-averaged growth rate of individual molecular clouds, and predict the associated cloud mass function. This picture naturally explains the accelerated star formation over many million years that was previously reported by stellar age determination in nearby star forming regions. The recent claim of cloud-cloud collisions as a mechanism for forming massive stars and star clusters can be naturally accommodated in this scenario. This explains why massive stars formed in cloud-cloud collisions follows the power-law slope of the mass function of molecular cloud cores repeatedly found in low-mass star forming regions.
Novel water-soluble titanium complexes coordinated by hydroxycarboxylic acids or amines were developed, and the hydrothermal treatment of the new complexes was carried out to elucidate the formation mechanism of the titania polymorphs including rutile, anatase, and brookite. An empirical relationship among the crystal structure of TiO2, the ligand, and the complex structure was found. Anatase, rutile, or a mixture of both was obtained by the hydrothermal treatment of the complexes coordinated by hydroxycarboxylic acids. The structure of complexes prepared using hydroxycarboxylic acids, which have one hydroxyl and one carboxylic groups, seems to be preferable for the formation of rutile. It was also found that the hydrothermal treatment of titanium complexes coordinated by amine with NAc2 structure resulted in the formation of brookite. Thus, the effect of ligand and complex structure on the crystal structure of TiO2 synthesized by the hydrothermal treatment of the complexes was proposed.
In 2011 February, a burst of the 22 GHz H2O maser in Orion KL was reported. In order to identify the bursting maser features, we have been carrying out observations of the 22 GHz H2O maser in Orion KL with VERA, a Japanese VLBI network dedicated for astrometry. The bursting maser turns out to consist of two spatially different features at 7.58 and 6.95 km s−1. We determine their absolute positions and find that they are coincident with the shocked molecular gas called the Orion Compact Ridge. We tentatively detect the absolute proper motions of the bursting features toward the southwest direction, perpendicular to the elongation of the maser features. It is most likely that the outflow from the radio source I or another young stellar object interacting with Compact Ridge is a possible origin of the H2O maser burst. We will also carry out observations with ALMA in the cycle 0 period to monitor the submillimeter H2O maser lines in the Orion Compact Ridge region. These follow-up observations will provide novel information on the physical and chemical properties of the mastering region.
This triennium began with an action to re-create the Terms of Reference for the Working Group Global VLBI (WG-GV). These had been lost over the years since the Group was established in 1990. Fortunately, the personal archive of one long-term member yielded a copy of the original memorandum by R. D. Ekers, which was found to coincide quite well with current practice and areas of interest. New Terms of Reference, based on modern conditions, were drafted and accepted by both IAU and URSI.
We studied the effect of post-anodization chemical etching on porous silicon by means of photoluminescence (PL), Fourier transform infrared (FTIR) absorption and Raman spectroscopy. We performed these measurements with repeating etching and then observed the variation of the spectra. On the basis of the correlation between PL and FTIR spectral changes, the PL emission at 660 and 730 nm in PL spectra stems from Si-H2, and Si-H clusters at surface, respectively. Raman spectra show a close relation between PL emission at 850 nm and nanocrystallites in porous silicon. In addition, chemical etching contributes to the promotion of nanocrystallites and to dissolving them.
We are investigating applicability of photoacoustic (PA) spectroscopy to porous silicon. Since PA spectroscopy is based on a non-radiative relaxation process, the measurement is of importance as a counterpart to photoluminescent spectroscopy. We studied a dependence of a PA amplitude on a chopping frequency and discussed the influence of a PA signal originated in a silicon substrate. The frequency dependence was elucidated with a two-layer model. Differences in PA spectra are correlated with a photoluminescent efficiency. From the correlation, we believe that non-radiative centers quench the efficiency.
(Zr, Sn)TiO4 is considered as a promising dielectric material for microwave devices owing to the temperature stability of capacitance and excellent microwave properties. Preferential (111)-oriented (ZrSn)TiO4 thin film was obtained by an ArF laser ablation. Properties of the crystallized film were as follows; the temperature coefficient of capacitance TCC was 17.6ppm/°C at 3MHz and the dielectric constant εr, 38 in the microwave range of 1GHz˜10GHz. It has turned out that the crystallization of this material is quite effective for improving dielectrical properties. Surface morphologies were observed by atomic force microscope(AFM). Grains grew on the crystallized film at 1 μm × 1 μm size.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.