We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We model the slip length tribometer (SLT), originally presented by Pelz et al. (J. Fluid Mech., vol. 948, 2022, p. A8) in OpenFOAM. The plate tribometer is especially designed to simultaneously measure viscosity and slip length for lubrication gaps in the range of approximately 10 $\mathrm {\mu }$m at temperatures and surface roughnesses relevant to technical applications, with a temperature range of $-30$ to $100\,^\circ \mathrm {C}$ and surface roughness ranging from $10\ \mathrm {nm}$ to $1\ \mathrm {\mu }\mathrm {m}$. A simplified analytical model presented by Pelz et al. (J. Fluid Mech., vol. 948, 2022, p. A8) infers the slip length of the plate from the experimentally measured torque and the plate gap height. The present work verifies the analytical model using axisymmetric flow simulations and presents the effect of inlet on the numerical velocity profiles. The simulation results are in very good agreement with the results of the analytical model. The main conclusion drawn from this study is the validation of the Navier-slip boundary condition as an effective model for partial slip in computational fluid dynamics simulations and the negligible influence of the inlet on the fluid flow between the SLT's plates.
We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic (aqueous polymer solution) drops on solid substrates with different wettabilities. For drops of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic drops (i) spread faster and (ii) their contact radius shows a different power law vs time than Newtonian drops. We argue that the effect of viscoelasticity is only observable for experimental time scales of the order of or larger than the internal relaxation time of the viscoelastic polymer solution. We attribute this behaviour to the shear thinning of the viscoelastic polymer solution. When approaching the contact line, the shear rate increases and the steady-state viscosity of the viscoelastic drop is lower than that of the Newtonian drop. We support our experimental findings with a simple (first-order) perturbation model that qualitatively agrees with our findings.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.