We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This collection of essays pays tribute to Nancy Freeman Regalado, a ground-breaking scholar in the field of medieval French literature whose research has always pushed beyond disciplinary boundaries. The articles in the volume reflect the depth and diversity of her scholarship, as well as her collaborations with literary critics, philologists, historians, art historians, musicologists, and vocalists - in France, England, and the United States. Inspired by her most recent work, these twenty-four essays are tied together by a single question, rich in ramifications: how does performance shape our understanding of medieval and pre-modern literature and culture, whether the nature of that performance is visual, linguistic, theatrical, musical, religious, didactic, socio-political, or editorial? The studies presented here invite us to look afresh at the interrelationship of audience, author, text, and artifact, to imagine new ways of conceptualizing the creation, transmission, and reception of medieval literature, music, and art.
EGLAL DOSS-QUINBY is Professor of French at Smith College; ROBERTA L. KRUEGER is Professor of French at Hamilton College; E. JANE BURNS is Professor of Women's Studies and Adjunct Professor of Comparative Literature at the University of North Carolina, Chapel Hill.
Contributors: ANNE AZÉMA, RENATE BLUMENFELD-KOSINSKI, CYNTHIA J. BROWN, ELIZABETH A. R. BROWN, MATILDA TOMARYN BRUCKNER, E. JANE BURNS, ARDIS BUTTERFIELD, KIMBERLEE CAMPBELL, ROBERT L. A. CLARK, MARK CRUSE, KATHRYN A. DUYS, ELIZABETH EMERY, SYLVIA HUOT, MARILYN LAWRENCE, KATHLEEN A. LOYSEN, LAURIE POSTLEWATE, EDWARD H. ROESNER, SAMUEL N. ROSENBERG, LUCY FREEMAN SANDLER, PAMELA SHEINGORN, HELEN SOLTERER, JANE H. M. TAYLOR, EVELYN BIRGE VITZ, LORI J. WALTERS, AND MICHEL ZINK.
We present NH3 and H64α+H63α VLA observations of the Radio Arc region, including the M0.20 – 0.033 and G0.10 – 0.08 molecular clouds. These observations suggest the two velocity components of M0.20 – 0.033 are physically connected in the south. Additional ATCA observations suggest this connection is due to an expanding shell in the molecular gas, with the centroid located near the Quintuplet cluster. The G0.10 – 0.08 molecular cloud has little radio continuum, strong molecular emission, and abundant CH3OH masers, similar to a nearby molecular cloud with no star formation: M0.25+0.01. These features detected in G0.10 – 0.08 suggest dense molecular gas with no signs of current star formation.
Lower to Middle Cambrian shales of the Mount Cap Formation in the Mackenzie Mountains, northwestern Canada, host a variety of Burgess Shale-type macrofossils, including anomalocarid claws, several taxa of bivalved arthropod, articulated hyolithids, and articulated chancelloriids. Hydrofluoric acid processing has also yielded a broad range of organic-walled fossils, most of which are derived from forms more typically known as shelly fossils; e.g., trilobites, inarticulate brachiopods, small shelly fossils (SSF), hyolithids, and chancelloriids. Organic-walled hyolithids include conchs, opercula and helens; the proximal articulation of the helens is erosive, suggesting that they were formed “instantaneously” and periodically replaced. Organic-walled chancelloriid sclerites exhibit a polygonal surface texture and an inner “pith” of dark granular material with distally oriented conoidal divisions; such a pattern is similar to that seen in the fibers of some modern horny sponges and points to a poriferan relationship for the chancelloriids. The robust nature but minimal relief of most of these fossils suggests that primary biomineralization was minimal.
We present a radio survey of molecules in a sample of Galactic center molecular clouds, including M0.25 + 0.01, the clouds near Sgr A, and Sgr B2. The molecules detected are primarily NH3 and HC3N; in Sgr B2-N we also detect non-metastable NH3, vibrationally-excited HC3N, torsionally-excited CH3OH, and numerous isotopologues of these species. 36 GHz Class I CH3OH masers are ubiquitous in these fields, and in several cases are associated with new NH3 (3,3) maser candidates. We also find that NH3 and HC3N are depleted or absent toward several of the highest dust column density peaks identified in submillimeter observations, which are associated with water masers and are thus likely in the early stages of star formation.
The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy [1], x-ray absorption spectroscopy [1,2,3,4], electron energy loss spectroscopy [2,3,4], Fano Effect measurements [5], and Bremstrahlung Isochromat Spectroscopy [6], including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples. [2,3,6]