We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work, we describe the impact of aspect ratio ($AR$) on the performance of optimally phased, identical flapping flippers in a tandem configuration. Three-dimensional simulations are performed for seven sets of single and tandem finite foils at a moderate Reynolds number, with thrust producing, heave-to-pitch coupled kinematics. Increasing slenderness (or $AR$) is found to improve thrust coefficients and thrust augmentation but the benefits level off towards higher values of $AR$. However, the propulsive efficiency shows no significant change with increasing $AR$, while the hind foil outperforms the single by a small margin. Further analysis of the spanwise development and propagation of vortical structures allows us to gain some insights into the mechanisms of these wake interactions and provide valuable information for the design of novel biomimetic propulsion systems.
Symmetric flapping foils are known to produce deflected jets at high frequency–amplitude combinations even at a zero mean angle of attack. This reduces the frequency range of useful propulsive configurations without side force. In this study, we numerically analyse the interaction of these deflected jets for tandem flapping foils undergoing coupled heave-to-pitch motion in a two-dimensional domain. The impact of the flapping Strouhal number, foil spacing and phasing on wake interaction is investigated. Our primary finding is that the back foil is capable of cancelling the wake deflection and mean side force of the front foil, even when located up to five chord lengths downstream. This is achieved by attracting the incoming dipoles and disturbing their cohesion within the limits of the back foil's range of flapping motion. We also show that the impact on cycle-averaged thrust varies from high augmentation to drag generation depending on the wake patterns downstream of the back foil. These findings provide new insights towards the design of biomimetic tandem propulsors, as they expand their working envelope and ability to rapidly increase or decrease the forward speed by manipulating the size of the shed vortices.
Reversed von Kármán streets are responsible for a velocity surplus in the wake of flapping foils, indicating the onset of thrust generation. However, the wake pattern cannot be predicted based solely on the flapping peak-to-peak amplitude $A$ and frequency $f$ because the transition also depends sensitively on other details of the kinematics. In this work we replace $A$ with the cycle-averaged swept trajectory ${\mathcal{T}}$ of the foil chordline. Two-dimensional simulations are performed for pure heave, pure pitch and a variety of heave-to-pitch coupling. In a phase space of dimensionless ${\mathcal{T}}-f$ we show that the drag-to-thrust wake transition of all tested modes occurs for a modified Strouhal $St_{{\mathcal{T}}}\rightarrow 1$. Physically, the product ${\mathcal{T}}f$ expresses the induced velocity of the foil and indicates that propulsive jets occur when this velocity exceeds $U_{\infty }$. The new metric offers a unique insight into the thrust-producing strategies of biological swimmers and flyers alike, as it directly connects the wake development to the chosen kinematics, enabling a self-similar characterisation of flapping foil propulsion.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.