We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Residual blood specimens collected at health facilities may be a source of samples for serosurveys of adults, a population often neglected in community-based serosurveys. Anonymized residual blood specimens were collected from individuals 15 – 49 years of age attending two sub-district hospitals in Palghar District, Maharashtra, from November 2018 to March 2019. Specimens also were collected from women 15 – 49 years of age enrolled in a cross-sectional, community-based serosurvey representative at the district level that was conducted 2 – 7 months after the residual specimen collection. Specimens were tested for IgG antibodies to measles and rubella viruses. Measles and rubella seroprevalence estimates using facility-based specimens were 99% and 92%, respectively, with men having significantly lower rubella seropositivity than women. Age-specific measles and rubella seroprevalence estimates were similar between the two specimen sources. Although measles seropositivity was slightly higher among adults attending the facilities, both facility and community measles seroprevalence estimates were 95% or higher. The similarity in measles and rubella seroprevalence estimates between the community-based and facility serosurveys highlights the potential value of residual specimens to approximate community seroprevalence.
Residual blood specimens provide a sample repository that could be analyzed to estimate and track changes in seroprevalence with fewer resources than household-based surveys. We conducted parallel facility and community-based cross-sectional serological surveys in two districts in India, Kanpur Nagar District, Uttar Pradesh, and Palghar District, Maharashtra, before and after a measles-rubella supplemental immunization activity (MR-SIA) from 2018 to 2019. Anonymized residual specimens from children 9 months to younger than 15 years of age were collected from public and private diagnostic laboratories and public hospitals and tested for IgG antibodies to measles and rubella viruses. Significant increases in seroprevalence were observed following the MR SIA using the facility-based specimens. Younger children whose specimens were tested at a public facility in Kanpur Nagar District had significantly lower rubella seroprevalence prior to the SIA compared to those attending a private hospital, but this difference was not observed following the SIA. Similar increases in rubella seroprevalence were observed in facility-based and community-based serosurveys following the MR SIA, but trends in measles seroprevalence were inconsistent between the two specimen sources. Despite challenges with representativeness and limited metadata, residual specimens can be useful in estimating seroprevalence and assessing trends through facility-based sentinel surveillance.
Polycystic Ovary Syndrome (PCOS) is a common hormonal condition affecting women of reproductive age(1). Women with PCOS experience a broad range of clinical symptoms, collectively grouped into reproductive, metabolic, psychological and anthropometric features(2). Complementary therapies, such as nutrient supplementation, have been identified as potential adjunct therapeutic approaches to support currently recommended lifestyle and pharmacological interventions(3). However, evidence for their overall efficacy and safety is inconsistent and unclear. This review aimed to systematically map the available literature on the use of nutrient supplementation for the management of PCOS features, including metabolic, reproductive, psychological and anthropometric. This review followed a systematic approach with literature searches using CINHAL, Cochrane reviews, Medline, PsycINFO, Scopus and LILACS conducted up to April 2022. All types of study designs were included if they reported on the efficacy or association between micronutrient supplementation and/or nutraceuticals on features of PCOS in women (≥ 18 years) with a confirmed diagnosis of PCOS. A total of 317 articles were included involving n = 23,926 women. Forty-three different supplements examined various clinical features of PCOS grouped into metabolic, reproductive, psychological and anthropometric. The most studied supplements included Inositols (n = 83), Vitamin D (n = 51), N-acetylcysteine (n = 25), Omega-3 fatty acids (n = 18) and Biotics (n = 14). Most studies (n = 262; 83%) reported on reproductive features followed by metabolic (n = 212; 66%), anthropometric (n = 181; 57%) and psychological (n = 5; 2%). Less than half (n = 148; 47%) of the included studies reported on the potential for adverse events. Our results highlight that the potential therapeutic benefit of micronutrient and nutraceutical supplementation on psychological features of PCOS warrants future exploration. Additional primary studies that are adequately powered are needed to investigate therapeutic doses needed for clinical benefits. Lastly, a more rigorous approach to monitoring and recording adverse event data is recommended.
Rice crop is affected by different types of floods at different stages of the crop cycle. Constant efforts of researchers resulted in the development of rice varieties for anaerobic germination, flash floods and stagnant flooding by both conventional and molecular breeding approaches. Detection of QTLs for different types of floods in new genetic source (AC39416A) is needed to combat adverse effects of climate change. Present investigation was carried out to identify QTLs for flood tolerance using recombinant inbred lines derived from Indra and AC39416A. QTL mapping resulted in identification of QTLs, qAG3.1 on chromosome 3 for anaerobic germination and qSF10.1 on chromosome 10 for plant survival % under stagnant flooding. These QTLs explain 59.08 and 13.21% of phenotypic variance respectively. Two candidate genes were identified in qAG3.1 region, LOC_Os03g42130 gibberellin 20 oxidase2 and LOC_Os03g44170 glutathione S-transferase. The underlying mechanism might be the inhibition of gibberellic acid synthesis and thereby protecting seedlings from oxidative stress under anoxia condition. Genomic region of qSF10.1 revealed LOC_Os10g35020 glycosyltransferase and LOC_Os10g35050 aquaporin protein loci, which might be responsible for adaptive mechanism for plant survival % under stagnant flooding. This indicates that the new genetic resource AC39416A has an ability to adopt to different types of flood tolerance in response to environmental stress. Unveiling physiological and molecular mechanisms for flood tolerance in AC39416A using advanced omics studies would help in precise genomic selections for sustained production in flood-prone areas.
Subduction-related kimberlite-borne eclogite xenoliths of the Precambrian age may provide significant information about the evolution and recycling of a subducting crust as exhumed/orogenic eclogites of the pre-Mesoproterozoic time-frame are globally rare. In this paper, we report a kimberlite-borne eclogite xenolith from the diamondiferous Kalyandurg kimberlite cluster of the Eastern Dharwar Craton, India, which contains a plethora of ultra-high-pressure minerals such as coesite, majoritic garnet, and supersilicic K-rich omphacite. The presence of these ultra-high-pressure minerals is confirmed by in situ X-ray diffractometry, laser Raman spectra and electron probe microanalysis. The presence of coesite undisputedly pinpoints a subduction origin for the eclogite at ∼2.8 GPa pressure, which corresponds to ∼100 km depth. The geothermobarometric estimations involving garnet–omphacite–kyanite–coesite reveal that such an eclogitic assemblage equilibrated at ∼5–8 GPa (∼175–280 km) pressure during ultra-deep subduction. The textural relationship between omphacite, coarse-grained garnet and majoritic garnet coupled with the laser Raman spectra and geobarometric estimations obtained from the majoritic garnet demonstrate that the majoritic garnet formed at ∼8–19 GPa (∼280–660 km) owing to disassociation of omphacite and coarse-grained garnet to majoritic garnet during increment of pressure up to the mantle transition zone. Thus, the mineralogical and geothermobarometric data suggest that the studied eclogite possibly travelled down to the mantle transition zone before it was rapidly carried up by a pre-Mesoproterozoic mantle plume, and subsequently entrained as a xenolith by the Mesoproterozoic (∼1.1 Ga) kimberlite.
Olivines from igneous rocks generally have low calcium contents. However, olivines crystallized from strongly silica-undersaturated magmas occasionally contain large amounts of kirschsteinite (Ki" CaFeSiO4) and monticellite (Mo: CaMgSiO4) components. The purpose of this note is to report the first natural occurrence of kirschsteinite crystals that have lamite (La: CazSiO4) in the mineralogical norm.
The rare nickel telluride mineral melonite is identified from Jaduguda uranium ore, Singhbhum Shear Zone, Bihar, India. Its physical, optical, chemical, and paragenetic characteristics are described. The composition as obtained by EPMA is NiTe1.66Bi0.06 or approximately Ni3(Te,Bi)5. The association of melonite with molybenite in this ore deposit is unusual, since melonite is generally associated with tellurides of gold and silver. This is the first reported occurrence of melonite from India.
Trace elements in twenty samples of the Closepet granite (grey and pink varieties) and the related rocks have been determined by neutron activation analysis (Th, Rb, and Cs), fluorometry (U), flame-photometry (K), and emission spectroscopy (Pb, Sr). The trace element contents of the grey and pink varieties are generally similar. An analysis of the magnitudes of the trace element and other ratios (K/Rb, 235; Th/U, 6·4; U/K (× 104), 0·7; K/Cs (× 10−4), 3·6; Th/K (× 104), 5·3; Fe2O3/(FeO+Fe2O3), 0·27) as well as 87Sr/86Sr initial ratio (0·705; Crawford, 1969) of the Closepet granite indicate two possible modes of genesis: Either the granite magma was not highly differentiated and the vapour phase was relatively insignificant; the crystallization of the magma took place under essentially non-oxidizing conditions; the pink variety, which followed the grey variety, crystallized under essentially the same conditions as the grey variety. Or the Closepet granite had a two-stage history—palingenesis (starting from the Peninsular gneiss) and metasomatism involving the enrichment in K, Rb, Pb, and Th and depletion of Sr and Cs, among others.
Systematic isotopic studies based on natural and artificial radio-isotopes (32Si, 137Cs), stable isotopes (δ18O) and total β activity measurements have been carried out on Chhota Shigri glacier, Himachal Pradesh, central Himalaya, to study the dynamics of the ice, meltwater composition and to identify the deposition of the Chernobyl fall-out in the Himalayan region.
Using 32Si concentrations, the snout ice has been dated at ~ 250 years, based on which the past average surface ice-flow rate has been estimated as ~ 28 m year−1. Based on δ18O variations, in a shallow ice core, the accumulation rate of the ice has been estimated at ~520kgm−2 year−1. 32Si measurements of snout ice and englacial meltwaters indicate that at least 55% of the snow meltwater mixed with 45% of the old ice-melt water that emerged from englacial streams in the month of August 1987. Deposition of the artificial radionuclide (137Cs) and the very high total β activity observed in snow samples on Chhota Shigri glacier give the first evidence of Chernobyl fall-out deposition in the Indian Himalaya.
A statistical approach is followed for prediction of tolerences of notched strength of composite laminates using the recently proposed improved inherent flaw model (IFM). In order to examine the validity of this approach, the existing fracture data on graphite/epoxy composite laminates containing central holes and cracks were used. The notched strength estimations are found to be within the range of tested values.
Achieving low resistance ohmic contacts for heavily doped devices is critical towards ensuring that contact resistance does not dominate the device performance. Here, we report contact resistance studies done on Pt/LSMO, Ni/LSMO and Au/LSMO metal-semiconductor interfaces. Phase-pure LSMO thin films deposited on n+ Si substrates were lithographically patterned and metallized to produce circular transfer length method (CTLM) based specific contact resistivity (ρc) and transfer length (LT) evaluation structures. Based on the electrical performance, interfacial reactivity and mechanical stability of the three metal junctions, the lowest ρc and LT metal for LSMO films on Si is identified for device applications.
A low thermal budget process for back-end compatible PCMO based RRAM cell is essential for 3D stacked memory. In this paper, we investigate two strategies to engineer low thermal budget processing for bipolar switching - (i) deposition engineering i.e. based on deposition temperature and oxygen partial pressure, (ii) post deposition anneal i.e. based on inert anneal of room temperature deposited PCMO film.. We demonstrate that both deposition and anneal shows a transition temperature above which bipolar switching is realized. Oxygen partial pressure is a key deposition process parameter. As oxygen partial pressure is reduced memory window increases, however beyond an optimal O2 partial pressure, unipolar switching is observed. Inert anneal is more effective in thermal budget reduction as N2/550°C/2min anneal has same memory performance as 650°C/2hour deposition process.
Thyroid cancers infiltrating the upper aerodigestive tract are not uncommon. The management of these cases can be demanding, with a high level of surgical skill required to achieve adequate primary resection and reconstruction.
Materials and methods:
This study was a single institution series of seven patients, managed over two years, who underwent tracheal resection for advanced thyroid cancer. All patients were older than 45 years (range, 45–65 years) and were predominantly male (six of seven). All patients presented to us with a swelling in the neck. Fine needle aspiration cytology detected thyroid cancer in all patients. None of the patients required a tracheostomy prior to surgery; however, they all had varying levels of airway compromise. One patient had lung metastasis at presentation. In all patients, the airway was successfully secured with fibre-optic assisted intubation prior to surgery. All patients underwent a total thyroidectomy with tracheal resection and anastomosis. Montgomery's suprahyoid release was utilised to achieve adequate laryngeal drop. None of the patients required a tracheostomy in the post-operative period. All patients received adjuvant therapy with either radioiodine ablation and/or radiotherapy.
Conclusion:
Tracheal resection and primary reconstruction is a feasible surgical procedure for patients with thyroid cancer infiltrating the upper aerodigestive tract, with good clinical outcomes. However, the morbidity of the procedure mandates careful case selection, airway management and meticulous surgical technique.
Pentacene and poly 3-hexylthiophene (P3HT) are the most promising p-type organic semiconducting materials for fabrication of organic field effect transistors (OFETs). OFETs with aforesaid organic semiconducting materials have been demonstrated as total dose detectors for ionizing radiation, wherein the changes in the electrical characteristic parameters, such as, increase in the OFF current, increase in the ON current, change in the current ratio, shift in the threshold voltage, change in the subthreshold swing, etc., were used as a measure of ionizing radiation dose. Upon exposure to ionizing radiation P3HT based OFET sensor has shown an OFF current sensitivity of 4.4 nA/Gy while pentacene based OFET sensor has shown an OFF current sensitivity of 26.7 nA/Gy for a total of 50 Gy dose of ionizing radiation. Change in the conductivity of the thin-films of pentacene and P3HT were observed and compared using electrostatic force microscopy (EFM) imaging before and after exposure to ionizing radiation. Effects of ionizing radiation on the energy band structures of the organic semiconducting materials, pentacene and P3HT, have been studied using UV-visible spectroscopy. Moreover, analysis of UV-visible spectra of the thin-films suggested the generation of energy states in larger quantity in case of pentacene thin-film as compared to P3HT thin-film upon exposure to the same dose of ionizing radiation. These results confirm the higher sensitivity observed in pentacene OFET sensor as compared to P3HT OFET sensor in terms of the change in electrical parameters.
Changes in the material properties of copper (II) phthalocyanine (CuPc) thin-films were studied upon exposure to increasing dose of ionizing radiation using photoluminescence spectrum. We observe generation of new energy states below the band gap upon exposure to ionizing radiation. Organic electronic devices – CuPc based resistor and an organic field effect transistor (OFET) – are proposed in this work as total dose sensors for ionizing radiation. We observe an increase in the conductivity of CuPc thin-films with increasing dose of ionizing radiation. To overcome the possibility of changes/degradation in the electrical properties of CuPc thin-films upon interaction with various gases and moisture in the environment, a passivation layer of silicon nitride, deposited by hot-wire CVD process is proposed. Effect of ionizing radiation on the electrical properties of thin-films of CuPc has been studied. We observe a 170% increase in the resistance of the thin-film for a total of 50 Gy radiation dose using Cobalt-60 (60Co) radiation source. Moreover, significant changes in the electrical characteristics of an OFET, with CuPc as an organic semiconductor, have been observed with increasing doses of ionizing radiation. Experiments with an OFET (W/L = 19350 μm / 100 μm and tox = 150 nm) as a sensor resulted in a ∼100X change in the OFF current for a total of 50 Gy dose of ionizing radiation exhibiting a sensitivity of ∼1 nA/Gy. Moreover, implementing a reader circuit, shift in the threshold voltage of the OFET at 1e-7 A drain current displayed a sensitivity of 80 mV/Gy for a total of 50 Gy dose of ionizing radiation. CuPc based organic electronic devices have advantages as sensors because of their low-cost fabrication, large area coverage on flexible substrates, etc.
Swift heavy ion irradiation is one of the most versatile techniques to alter and monitor the properties of materials in general and at nanoscale in particular. The materials modification can be controlled by a suitable choice of ion beam parameters such as ion species, fluence and incident energy. It is also possible to choose these ion beam parameters in such a way that ion beam irradiation can cause annealing of defects or creation of defects at a particular depth. Here, we present a review of our work on swift heavy ion induced modifications of III-V semiconductor heterostructures and multi-quantum wells in addition to synthesis of Ge nanocrystals using atom beam co-sputtering, RF magnetron sputtering followed by RTA, swift heavy ion irradiation, respectively. We also present the growth of GeO2 nanocrystals by microwave annealing. These samples were studied by using XRD, Raman, PL, RBS and TEM. The observed results and their explanation using possible mechanisms are discussed in detail.
Organic semiconducting oligomer – Pentacene, as a material and organic electronic devices based on it, are proposed here as total dose detectors for ionizing radiation. Pentacene, when exposed to ionizing radiation of γ – rays using Cobalt – 60 (60Co) radiation source, shows increase in the conductivity of the material which can be used as a sensing phenomenon for determining the dose of ionizing radiation. The change in material property was also verified using UV-visible (UV-VIS) spectrum for pentacene thin-films with rising absorption peaks at the oxidized positions in the wavelength. A pentacene resistor can be used as a detector, as the change in the conductivity of the pentacene film can be easily quantified by measuring the change in resistance of the pentacene resistor after different total radiation dose exposures. The experiments resulted in a sensitivity of 340 kΩ/Gy for a total 100 Gy radiation dose for the pentacene resistor. Furthermore, employing this simple electrical measurement technique for determining the dose of ionizing radiation and to improve the sensitivity of the sensor by transistor action, a pentacene based organic field effect transistor (OFET) was exposed to ionizing radiation. Change in OFF current (IOFF) of the OFET sensor with W/L = 19350 μm/100 μm, suggests a sensitivity of 21 nA/Gy for 100 Gy dose. Also, changes in various other parameters like threshold voltage, subthreshold swing, field effect mobility, number of interface states etc. can be extracted from the electrical characterizations which prove their usefulness as a detector for ionizing radiation.
Ge nanocrystals embedded in silica matrix have been synthesized on Si substrate by co-sputtering of SiO2 and Ge using RF magnetron sputtering technique. The as-deposited films were subjected to microwave annealing at 800 and 9000C. Rutherford backscattering spectrometry (RBS) has been used to measure the Ge composition and film thickness. The structural characterization was performed by using X-ray diffraction (XRD) and Raman spectrometry. XRD measurements confirmed the formation of Ge nanocrystals. Raman scattering spectra showed a peak of Ge-Ge vibrational mode around 299 cm−1, which was caused by quantum confinement of phonons in the Ge nanocrystals. Surface morphology of the samples was studied by atomic force microscopy (AFM). Variation of nanocrystal size with annealing temperature has been discussed. Advantages of microwave annealing are explained in detail.