We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Persistent tobacco use and excessive alcohol consumption are major public health concerns worldwide. Both alcohol and nicotine dependence (AD, ND) are genetically influenced complex disorders that exhibit a high degree of comorbidity. To identify gene variants contributing to one or both of these addictions, we first conducted a pooling-based genomewide association study (GWAS) in an Australian population, using Illumina Infinium 1M arrays. Allele frequency differences were compared between pooled DNA from case and control groups for: (1) AD, 1224 cases and 1162 controls; (2) ND, 1273 cases and 1113 controls; and (3) comorbid AD and ND, 599 cases and 488 controls. Secondly, we carried out a GWAS in independent samples from the Netherlands for AD and for ND. Thirdly, we performed a meta-analysis of the 10, 000 most significant AD- and ND-related SNPs from the Australian and Dutch samples. In the Australian GWAS, one SNP achieved genomewide significance (p < 5 x 10-8) for ND (rs964170 in ARHGAPlOon chromosome 4, p = 4.43 x 10”8) and three others for comorbid AD/ND (rs7530302 near MARK1 on chromosome 1 (p = 1.90 x 10-9), rs1784300 near DDX6 on chromosome 11 (p = 2.60 x 10-9) and rs12882384 in KIAA1409 on chromosome 14 (p = 4.86 x 10-8)). None of the SNPs achieved genomewide significance in the Australian/Dutch meta-analysis, but a gene network diagram based on the top-results revealed overrepre-sentation of genes coding for ion-channels and cell adhesion molecules. Further studies will be requirec before the detailed causes of comorbidity between AC and ND are understood.
Taste is expected to represent a food's nutrient content. The objective was to investigate whether taste acts as nutrient-sensor, within the context of the current diet, which is high in processed foods. Intensities of the five basic tastes of fifty commonly consumed foods were rated by nineteen subjects (aged 21·0 (sd 1·7) years, BMI 21·5 (sd 2·0) kg/m2). Linear regression was used to test associations between taste and nutrient contents. Food groups based on taste were identified using cluster analysis; nutrient content was compared between food groups, using ANOVA. Sweetness was associated with mono- and disaccharides (R2 0·45, P < 0·01). Saltiness and savouriness were correlated, with r 0·92 (P < 0·01) and both were associated with Na (both: R2 0·33, P < 0·01) and protein (R2 0·27, P < 0·01 and R2 0·33, P < 0·01, respectively). Cluster analysis indicated four food groups: neutral, salty and savoury, sweet–sour and sweet foods. Mono- and disaccharide content was highest in sweet foods (P < 0·01). In salty and savoury foods, protein content (P = 0·01 with sweet–sour foods, not significant with neutral or sweet foods) and Na content (P < 0·05) were the highest. Associations were more pronounced in raw and moderately processed foods, than in highly processed foods. The findings suggest that sweetness, saltiness and savouriness signal nutrient content, particularly for simple sugars, protein and Na. In highly processed foods, however, the ability to sense nutrient content based on taste seems limited.
Email your librarian or administrator to recommend adding this to your organisation's collection.