We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The COVID-19 pandemic presented a challenge to established seed grant funding mechanisms aimed at fostering collaboration in child health research between investigators at the University of Minnesota (UMN) and Children’s Hospitals and Clinics of Minnesota (Children’s MN). We created a “rapid response,” small grant program to catalyze collaborations in child health COVID-19 research. In this paper, we describe the projects funded by this mechanism and metrics of their success.
Methods:
Using seed funds from the UMN Clinical and Translational Science Institute, the UMN Medical School Department of Pediatrics, and the Children’s Minnesota Research Institute, a rapid response request for applications (RFAs) was issued based on the stipulations that the proposal had to: 1) consist of a clear, synergistic partnership between co-PIs from the academic and community settings; and 2) that the proposal addressed an area of knowledge deficit relevant to child health engendered by the COVID-19 pandemic.
Results:
Grant applications submitted in response to this RFA segregated into three categories: family fragility and disruption exacerbated by COVID-19; knowledge gaps about COVID-19 disease in children; and optimizing pediatric care in the setting of COVID-19 pandemic restrictions. A series of virtual workshops presented research results to the pediatric community. Several manuscripts and extramural funding awards underscored the success of the program.
Conclusions:
A “rapid response” seed funding mechanism enabled nascent academic-community research partnerships during the COVID-19 pandemic. In the context of the rapidly evolving landscape of COVID-19, flexible seed grant programs can be useful in addressing unmet needs in pediatric health.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
This paper describes the system architecture of a newly constructed radio telescope – the Boolardy engineering test array, which is a prototype of the Australian square kilometre array pathfinder telescope. Phased array feed technology is used to form multiple simultaneous beams per antenna, providing astronomers with unprecedented survey speed. The test array described here is a six-antenna interferometer, fitted with prototype signal processing hardware capable of forming at least nine dual-polarisation beams simultaneously, allowing several square degrees to be imaged in a single pointed observation. The main purpose of the test array is to develop beamforming and wide-field calibration methods for use with the full telescope, but it will also be capable of limited early science demonstrations.
For this pilot study, we compared performance of 15 adolescents with moderate–severe traumatic brain injury (TBI) to that of 13 typically developing (TD) adolescents in predicting social actions and consequences for avatars in a virtual microworld environment faced with dilemmas involving legal or moral infractions. Performance was analyzed in relation to cortical thickness in brain regions implicated in social cognition. Groups did not differ in number of actions predicted nor in reasons cited for predictions when presented only the conflict situation. After viewing the entire scenario, including the choice made by the avatar, TD and TBI adolescents provided similar numbers of short-term consequences. However, TD adolescents provided significantly more long-term consequences (p = .010). Additionally, for the Overall qualitative score, TD adolescents’ responses were more likely to reflect the long-term impact of the decision made (p = .053). Groups differed in relation of the Overall measure to thickness of right medial prefrontal cortex/frontal pole and precuneus, with stronger relations for the TD group (p < .01). For long-term consequences, the relations to the posterior cingulate, superior medial frontal, and precentral regions, and to a lesser extent, the middle temporal region, were stronger for the TBI group (p < .01). (JINS, 2013, 19, 1–10.)
In August 1988 an increase was noted in the number of cases of cryptosporidiosis identified by the microbiology laboratory at Doncaster Royal Infirmary. By 31 October, 67 cases had been reported. Preliminary investigations implicated the use of one of two swimming pools at a local sports centre and oocysts were identified in the pool water. Inspection of the pool revealed significant plumbing defects which had allowed ingress of sewage from the main sewer into the circulating pool water. Epidemiological investigation confirmed an association between head immersion and illness. The pools were closed when oocysts were identified in the water and extensive cleaning and repair work was undertaken. The pool water was retested for cryptosporidial oocysts and found to be negative before the pool re-opened.
Strains ofSalmonella enteritidis, S. typhimurium and S. senftenberg inoculated into the yolks of shell eggs were found to survive forms of cooking where some of the yolk remained liquid. Survival was largely independent of the size of the initial inoculum. The organisms also grew rapidly in eggs stored at room temperature and after 2 days the number of cells per gram of yolk exceeded log 8·0. With this level of contamination viable cells could be recovered from eggs cooked in any manner.
Salmonella enteritidis PT4 was found to be more resistant to heat in egg than some other common egg-associated salmonellas. This organism was significantly more heat sensitive than S. senftenberg 775W, however, and should not survive in pasteurized liquid egg.
For maximum utilization of deep cultures to produce FMD virus it was important to have adequate control of culture temperature and pH. Culture temperature should be controlled within the range 34·25°7–35°C. and culture pH at 7·2. The culture system became less efficient as the cell concentration was increased from 1 × 106·0 to 9 × 106·0 cells/ml. A cell concentration of 2·5 × 106·0 cells/ml. represented a working compromise between efficiency and antigen titre/ml. for inactivated FMD vaccine production.
The input virus/cell ratio had no effect on the time or titre of peak virus yield in the range 1:1 to 1:320. This makes the production of seed virus from small numbers of monolayer cultures feasible and economical.
Virus yield was improved by the addition of 5% serum. It would be more satisfactory if a serum-free cell strain could be developed.
A reinterpretation is attempted of the 25 years of graptolite ultrastructural work based upon the present state of knowledge. It is emphasized that studies need to embrace many more species of graptolites, particularly in the dichograptid groups, and with different growth stages, before the gross evolution of ultrastructural elements can be satisfactorily appraised. The factual (morphological, ultrastructural) data are themselves reappraised, summarized, and very tentatively related to Bulman's anagenetic grades of graptolite development.
In vitro excretory/secretory products of 4-week (immature) and 8- week-old (mature) Fasciola hepatica parasites, derived from rats, were injected together with adjuvant into naive rats and mice. Resistance to infection was assessed in rats by counting adults in the bile ducts at 9 weeks, or in mice by recording deaths after oral challenge with a high dose of viable metacercariae. Exposure of rats to excretory/secretory products of immature F. hepatica conferred a significant degree of resistance which was comparable to the level of resistance induced following oral administration of a low number of metacercariae. No protection against infection was seen in rats injected with excretory/secretory products from mature, bile duct-derived worms. In mice, no obvious mouse strain variation in susceptibility to first infection existed and hypothymic nude mice were as susceptible to infection as intact mice. As determined by protection against death, vaccination with excretory/secretory products derived from immature P. hepatica was without effect in mice. It is concluded that ‘host protective antigens’, at least for rats, were present in the excretory/secretory products of immature F. hepatica larvae.
An experiment to measure the variation in the phenological and apical development ofwinter wheat (cv. Avalon) in England and Scotland is described. Ten sites which ranged from Aberdeen (57·2° N), the most northerly, to Newton Abbot (50·6° N), the most southerly, were included in the survey, and at each site seed was hand-sown in mid-September, October and November 1983. Developmental stages and sampling procedures were precisely defined to ensure uniformity in scoring by the observers at each site. Temperatures during the growing season were in line with the long-term means, though spring was cooler at all sites and summer warmer at most. The range of monthly-mean temperatures between sites was about the same as the difference between consecutive months. The method of analysis of development rates and durations was in terms of thermal time, modified by sensitivity to photoperiod and a vernalization requirement that slowed early development until a number of days of low temperatures had been experienced. In general, crops at northern sites developed more slowly than those in the south and particularly the south-west of England. There was less variation in the timing of apical stages for later sowings. Developmental rates responded linearly to temperature and photoperiod, with the base temperature increasing for later phases of development. The effect of photoperiod in modifying the rate of development was apparent for all developmental phases from emergence to anthesis, longer days accelerating development, but there was no effect on the duration of the grain-filling period. Vernalization exerted its effect solely within the phase from emergence to double ridge, and had a major influence on the variation between sites only for the first sowing.
The initiation of leaf and spikelet primordia was studied at sites ranging in latitude from Newton Abbot (50·6°N) to Aberdeen (57·2°N) in crops sown in the middle of September, October and November 1983. The rate of primordium initiation tended to decrease from south to north but there were also marked differences between quite close sites.
The rate of leaf initiation increased with temperature but photoperiod had little effect; the rate of spikelet initiation was affected both by temperature and by photoperiod. There were differences in the total number of leaves initiated which were only partlyexplained by differences in vernalization.
Expressing leaf and spikelet initiation rates in terms of thermal and photo-thermal time respectively showed a constant rate of leaf initiation and a constant and more rapid rate of spikelet initiation.
A uniform approximation to the description of a linear oscillator's slow resonant transition is calculated. If the time scale of the transition is ɛ−1, the approximation contains explicitly the 0(1) and 0(ɛ½) terms, and fixes a uniform 0(ɛ) error bound.
The laser Lorenz equations are studied by reducing them to a form suitable for application of an extension of a method developed by Kuzmak. The method generates a flow in a Poincaré section from which it is inferred that a certain Hopf bifurcation is always subcritical.
A general theory is given for autonomous perturbations of non-linear autonomous second order oscillators. It is found using a multiple scales method. A central part of it requires computation of Fourier coefficients for representation of the underlying oscillations, and these coefficients are found as convergent expansions in a suitable parameter.
An approximate nonlinear perturbation analysis for the re-entry roll resonance model is given. The results are used to identify the dynamic processes involved, as characterised by terms in the model equations, and to suggest a prudent management rule for this and similar transiently-resonant systems.