We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
The surface thermodynamic properties of a series of n-alkylammonium and quaternary ammonium treated clay films were determined by contact angle measurement of drops of test liquids using the Young equation for polar materials. The two clays were a Wyoming montmorillonite (SWy-1) and Laponite RD. For a series of primary n-alkyl (6 ≤ n ≤ 15) and several quaternary organic cations, the organo-clay (both SWy-1 and Laponite RD) showed very little change in the value of γLW compared to the equivalent ammonium-saturated clay. Also, γ⊕ remained small or increased slightly compared to the ammonium-saturated clay. For SWy-1 exchanged by both quaternary ammonium and primary n-alkylammonium cations, the value of γ⊖ was smaller (0.1 ≤ γ⊖ ≤ 15.8 mJ/m2) than for the ammonium-saturated clay (γ⊖ = 36.2 mJ/m2) and decreased linearly with the number of carbon atoms. The γ⊖ values for the organic cation-exchanged Laponite RD samples (24.2 ≤ γ⊖ ≤ 31.2 mJ/m2) were smaller than or comparable to the ammonium saturated clay (γ⊖ = 30.7 mJ/m2), and were relatively insensitive to the number of carbon atoms in the organic cation. Thus, for both clays the increased adsorption of organic molecules resulting from replacement of inorganic cations by organic cations is due primarily to the decrease in the value of the Lewis base parameter, γ⊖.
With the advent of deep, all-sky radio surveys, the need for ancillary data to make the most of the new, high-quality radio data from surveys like the Evolutionary Map of the Universe (EMU), GaLactic and Extragalactic All-sky Murchison Widefield Array survey eXtended, Very Large Array Sky Survey, and LOFAR Two-metre Sky Survey is growing rapidly. Radio surveys produce significant numbers of Active Galactic Nuclei (AGNs) and have a significantly higher average redshift when compared with optical and infrared all-sky surveys. Thus, traditional methods of estimating redshift are challenged, with spectroscopic surveys not reaching the redshift depth of radio surveys, and AGNs making it difficult for template fitting methods to accurately model the source. Machine Learning (ML) methods have been used, but efforts have typically been directed towards optically selected samples, or samples at significantly lower redshift than expected from upcoming radio surveys. This work compiles and homogenises a radio-selected dataset from both the northern hemisphere (making use of Sloan Digital Sky Survey optical photometry) and southern hemisphere (making use of Dark Energy Survey optical photometry). We then test commonly used ML algorithms such as k-Nearest Neighbours (kNN), Random Forest, ANNz, and GPz on this monolithic radio-selected sample. We show that kNN has the lowest percentage of catastrophic outliers, providing the best match for the majority of science cases in the EMU survey. We note that the wider redshift range of the combined dataset used allows for estimation of sources up to $z = 3$ before random scatter begins to dominate. When binning the data into redshift bins and treating the problem as a classification problem, we are able to correctly identify $\approx$76% of the highest redshift sources—sources at redshift $z > 2.51$—as being in either the highest bin ($z > 2.51$) or second highest ($z = 2.25$).
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
The role of fire in the management of degraded areas remains strongly debated. Here we experimentally compare removal and infestation of popcorn kernels (Zea mays L. – Poaceae) and açaí fruits (Euterpe oleracea Mart. – Arecaceae) in one burned and two unburned savanna habitats in the eastern Brazilian Amazon. In each habitat, a total of ten experimental units (five per seed type) were installed, each with three treatments: (1) open access, (2) vertebrate access, and (3) invertebrate access. Generalized linear models showed significant differences in both seed removal (P < 0.0001) and infestation (P < 0.0001) among seed type, habitats and access treatments. Burned savanna had the highest overall seed infestation rate (24.3%) and invertebrate access increased açaí seed infestation levels to 100% in the burned savanna. Increased levels of invertebrate seed infestation in burned savanna suggest that preparation burning may be of limited use for the management and restoration of such habitats in tropical regions.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim$ 15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288-MHz band centred at 887.5 MHz.
From November 2019 to April 2020, the prototypical red supergiant Betelgeuse experienced an unexpected and historic dimming. This event was observed worldwide by astrophysicists, and also by the general public with the naked eye. We present here the results of our observing campaign with ESO’s VLT and VLTI in the visible and infrared domains. The observations with VLT/SPHERE-ZIMPOL, VLT/SPHERE-IRDIS, VLTI/GRAVITY and VLTI/MATISSE provide spatially resolved diagnostics of this event. Using PHOENIX atmosphere models and RADMC3D dust radiative transfer simulations, we built a consistent model reproducing the images and the photometry.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together $60+$ programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
A new era in radio astronomy will begin with the upcoming large-scale surveys planned at the Australian Square Kilometre Array Pathfinder (ASKAP). ASKAP started its Early Science programme in October 2017 and several target fields were observed during the array commissioning phase. The Scorpio field was the first observed in the Galactic Plane in Band 1 (792–1 032 MHz) using 15 commissioned antennas. The achieved sensitivity and large field of view already allow to discover new sources and survey thousands of existing ones with improved precision with respect to previous surveys. Data analysis is currently ongoing to deliver the first source catalogue. Given the increased scale of the data, source extraction and characterisation, even in this Early Science phase, have to be carried out in a mostly automated way. This process presents significant challenges due to the presence of extended objects and diffuse emission close to the Galactic Plane.
In this context, we have extended and optimised a novel source finding tool, named Caesar, to allow extraction of both compact and extended sources from radio maps. A number of developments have been done driven by the analysis of the Scorpio map and in view of the future ASKAP Galactic Plane survey. The main goals are the improvement of algorithm performances and scalability as well as of software maintainability and usability within the radio community. In this paper, we present the current status of Caesar and report a first systematic characterisation of its performance for both compact and extended sources using simulated maps. Future prospects are discussed in the light of the obtained results.
Laponite RD forms stable, coherent films which adhere strongly to glass slides. Such films are capable of supporting liquid drops allowing the direct measurement of contact angles for five liquids of which, two were apolar (0:-bromonaphthalene and diiodomethane) and three were polar (water, formamide, glycerol); surface tension components and parameters (γLw, γ⊕ and γ⊖) were determined by solving the Young equation. These determinations were made for homoionic samples saturated with Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba and NH4 as well as the natural material. Whereas the values of γLw (the apolar Lifshitz-van der Waals component) varied only within narrow limits (41-44 mJ/m2), the Lewis base parameter varied comparatively widely (24-41 mJ/m2). The Lewis acid parameter was small and relatively constant (1·3-3·0 mJ/m2). The variation of γ⊖ as a function of the exchangeable cation suggests that the divalent cations are shielded from the silicate surface by the water molecules of their sphere of hydration, whereas the monovalent cations are in direct contact with the oxygen atoms of the silicate surface. Furthermore, the divalent cations may screen the Lewis base sites to a greater degree than do the monovalent cations. Lithium behaves anomalously and this may indicate that it physically enters into the ditrigonal hole in the silicate layer.
Bentonite is one of the more safety-critical components of the engineered barrier system in the disposal concepts developed for many types of radioactive waste. It is used due to its favourable properties (including plasticity, swelling capacity, colloid filtration, low hydraulic conductivity, high retardation of key radionuclides) and its stability in relevant geological environments. However, bentonite is unstable under alkaline conditions and this has driven interest in low-alkali cements (leachate pH of 10–11). To build a robust safety case, it is important to have supporting natural analogue data to confirm understanding of the likely long-term performance of bentonite. In Cyprus, the presence of natural bentonite in close proximity to natural alkaline groundwaters permits the zones of potential bentonite/alkaline water reaction to be studied as an analogy of the potential reaction zones in the repository. Here, the results indicate minimal volumetric reaction of bentonite, with production of a palygorskite secondary phase.
Inhibition of growth and photosynthesis in sugarbeet (Beta vulgaris L. var. ‘USH10’) treated with desmedipham [ethyl m-hydroxycarbanilate carbanilate (ester)] was most severe between 25 and 30 C and decreased with higher or lower temperatures. Transfer of sugarbeet plants grown at temperatures from 10 to 35 C to higher temperatures after treatment increased injury and photosynthetic inhibition. Higher temperatures prior to treatment reduced injury at all posttreatment temperatures. When the temperature was changed from 25 to 40 C, inhibition was most severe immediately after treatment. Two days after treatment this 15 C temperature change did not cause additional injury. High posttreatment light intensities caused greater inhibition of photosynthesis than low light intensities.
Seeds of five yellow foxtail [Setaria lutescens (Weigel) Hubb.] biotypes, collected from Connecticut, Iowa, Massachusetts, Pennsylvania and California, were tested for dormancy and germination characteristics. Seeds of the California biotypes, while dormant at time of dispersal, germinated readily following a 4-month after-ripening period in dry storage. California biotype seeds did not require stratification. The eastern biotypes also showed high initial dormancy. Prolonged dry storage (16 months) or stratification overcame this dormancy to varying degrees. All five biotypes germinated over the range of 15 to 35 C, but the California biotype exhibited much higher germination at 35 C than any eastern biotype. The California biotype germinated more rapidly, by 1 to 3 days, at any given temperature than the eastern biotypes. These differences in dormancy and germination requirements between the five biotypes are considered as evidence to support a hypothesis of genetically controlled, physiological differences between geographically separated biotypes.
Seed of yellow foxtail (Setaria lutescens (Weigel) Hubb.) biotypes collected in Connecticut, Iowa, Massachusetts, Pennsylvania, and California were grown under field conditions at Davis and Woodland, California. Three biotypes collected in California alfalfa (Medicago sativa L.) fields all exhibited only a prostrate growth habit; the biotypes from the eastern United States all had an upright growth habit. The California biotypes were always glaucous; those collected in the east were not glaucous. Ratio of culm height to culm length were near unity for the eastern biotypes but averaged 1.5 to 1.7 for the California biotypes. Variations existed between biotypes in days from planting to heading, number of nodes per culm, leaf shape and size, and in final dry weight per plant.
The methyl ester of diclofop [2-(4-(2,4-dichlorophenoxy) phenoxy) propionic acid] was used in all of a series of experiments. When it was applied postemergence, it selectively controlled barnyardgrass [Echinochloa crus-galli (L.) Beauv.] in sugarbeets (Beta vulgaris L. ‘USH 9′). Tank-mixing diclofop with desmedipham [ethyl m-hydroxycarbanilate carbanilate (ester)] resulted in decreased control of barnyardgrass under greenhouse and field conditions. Losses in activity ranged from 10 to 80%. Delaying application of desmedipham following application of diclofop by 4 days in the greenhouse or in the field resulted in no reduction in barnyardgrass control. Increased rates of diclofop offset the antagonistic effect of desmedipham. Similar losses in activity occurred when Hoe-29152 {methyl-2-[4-(4-trifluoromethylphenoxy)phenoxy] propanoate} was tank-mixed with desmedipham.
Loss in activity of foliar-applied methyl ester of diclofop {2-[4-(2,4-dichlorophenoxy)phenoxy] propanoic acid} occurred under low soil moisture conditions. A loss in control of yellow foxtail [Setaria lutescens (Weigel) Hubb.], wild oats (Avena fatua L.), little-seed canarygrass (Phalaris minor Retz.), and barnyardgrass [Echinochloa crus-galli (L.) Beauv.], was observed under greenhouse and growth chamber conditions. When soil was maintained at 2 to 3% above wilting point as compared to near field capacity, herbicide activity was decreased by 15 to 50%. High soil moisture (at or above 67% of field capacity) for at least 2 to 4 days following treatment was needed to achieve maximum effectiveness of the herbicide. Daily furrow irrigations for a period of 10 days following treatment of barnyardgrass in the field resulted in highest activity as compared to that under single irrigation regimes within the 10-day period. The effect of low soil moisture was minimized by increased rates of herbicide application. Hoe-29152 {methyl-2-[4-(4-trifluoromethylphenoxy)phenoxy] propanoate} showed similar losses in activity associated with low soil moisture. No consistent changes in uptake or translocation of 14C-labeled diclofop could be detected in association with altered soil moisture status.
Africa is experiencing a rapid increase in adult obesity and associated cardiometabolic diseases (CMDs). The H3Africa AWI-Gen Collaborative Centre was established to examine genomic and environmental factors that influence body composition, body fat distribution and CMD risk, with the aim to provide insights towards effective treatment and intervention strategies. It provides a research platform of over 10 500 participants, 40–60 years old, from Burkina Faso, Ghana, Kenya and South Africa. Following a process that involved community engagement, training of project staff and participant informed consent, participants were administered detailed questionnaires, anthropometric measurements were taken and biospecimens collected. This generated a wealth of demographic, health history, environmental, behavioural and biomarker data. The H3Africa SNP array will be used for genome-wide association studies. AWI-Gen is building capacity to perform large epidemiological, genomic and epigenomic studies across several African counties and strives to become a valuable resource for research collaborations in Africa.
A sensitive search has been made for OH maser emission from a sample of 16 symbiotic stars. This sample has been selected on the basis of infrared optical depth and variability, so that the stars within it have circumstellar shells similar to those seen in the well-known OH/IR and OH/Mira stars. There were no significant detections, except for one unassociated background source, and we conclude that the presence of a hot binary companion inhibits any possible OH maser action.
A survey of the optical spectra of IRAS galaxies, made with the AAT, has shown that the majority have strong emission lines. Ratios of the emission lines have been plotted on the Veilleux-Osterbrock diagram ([O III]/Hβ against [N II]/Hα); this shows that the IRAS galaxies comprise several classes. In our sample the majority appear to be starburst galaxies, but Seyfert, Liner and narrow-line galaxies are also represented. Co-added spectra of the galaxy classes are presented. On the basis of optical spectroscopy, it appears that the starburst phenomenon is capable of generating luminosities exceeding 1012L⊙.