We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Recently, several incidents of glyphosate failure on junglerice [Echinochloa colona (L.) Link] have been reported in the midsouthern United States, specifically in Mississippi and Tennessee. Research was conducted to measure the magnitude of glyphosate resistance and to determine the mechanism(s) of resistance to glyphosate in E. colona populations from Mississippi and Tennessee. ED50 (dose required to reduce plant growth by 50%) values for a resistant MSGR4 biotype, a resistant TNGR population, and a known susceptible MSGS population were 0.8, 1.62, and 0.23 kg ae ha−1 of glyphosate, respectively. The resistance index calculated from the these ED50 values indicated that the MSGR4 biotype and TNGR population were 4- and 7-fold, respectively, resistant to glyphosate relative to the MSGS population. The absorption patterns of [14C]glyphosate in the TNGR and MSGS populations were similar. However, the MSGS population translocated 13% more [14C]glyphosate out of the treated leaf compared with the TNGR population at 48 h after treatment. EPSPS gene sequence analyses of TNGR E. colona indicated no evidence of any point mutations, but several resistant biotypes, including MSGR4, possessed a single-nucleotide substitution of T for C at codon 106 position, resulting in a proline-to-serine substitution (CCA to TCA). Results from quantitative polymerase chain reaction analyses suggested that there was no amplification of the EPSPS gene in the resistant populations and biotypes. Thus, the mechanism of resistance in the MSGR population (and associated biotypes) is, in part, due to a target-site mutation at the 106 loci of the EPSPS gene, while reduced translocation of glyphosate was found to confer glyphosate resistance in the TNGR population.
X-ray momentum coupling coefficients, CM, were determined by measuring stress waveforms in planetary materials subjected to impulsive radiation loading from the Sandia National Laboratories Z-machine. Velocity interferometry (VISAR) diagnostics provided equation-of-state data. Targets were iron and stone meteorites, magnesium-rich olivine (dunite) solid and powder (~5–300 μm), and Si, Al, and Fe calibration targets. Samples were ~1-mm thick and, except for Si, backed by LiF single-crystal windows. X-ray spectra combined thermal radiation (blackbody 170–237 eV) and line emissions from pinch materials (Cu, Ni, Al, or stainless steel). Target fluences of 0.4–1.7 kJ/cm2 at intensities of 43–260GW/cm2 produced plasma pressures of 2.6–12.4 GPa. The short (~5 ns) drive pulses gave rise to attenuating stress waves in the samples. The attenuating wave impulse is constant, allowing accurate CM measurements from rear-surface motion. CM was 1.9 − 3.1 × 10−5 s/m for stony meteorites, 2.7 and 0.5 × 10−5 s/m for solid and powdered dunite, 0.8 − 1.4 × 10−5 s/m for iron meteorites, and 0.3, 1.8, and 2.7 × 10−5 s/m respectively for Si, Fe, and Al calibration targets. Results are consistent with geometric scaling from recent laser hohlraum measurements. CTH hydrocode modeling of X-ray coupling to porous silica corroborated experimental measurements and supported extrapolations to other materials. CTH-modeled CM for porous materials was low and consistent with experimental results. Analytic modeling (BBAY) of X-ray radiation-induced momentum coupling to selected materials was also performed, often producing higher CM values than experimental results. Reasons for the higher values include neglect of solid ejecta mechanisms, turbulent mixing of heterogeneous phases, variances in heats of melt/vaporization, sample inhomogeneities, wave interactions at the sample/window boundary, and finite sample/window sizes. The measurements validate application of CM to (inhomogeneous) planetary materials from high-intensity soft X-ray radiation.
Email your librarian or administrator to recommend adding this to your organisation's collection.