We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study for each fixed integer $g \ge 2$, for all primes $\ell $ and p with $\ell \neq p$, finite regular directed graphs associated with the set of equivalence classes of $\ell $-marked principally polarized superspecial abelian varieties of dimension g in characteristic p, and show that the adjacency matrices have real eigenvalues with spectral gaps independent of p. This implies a rapid mixing property of natural random walks on the family of isogeny graphs beyond the elliptic curve case and suggests a potential construction of the Charles–Goren–Lauter-type cryptographic hash functions for abelian varieties. We give explicit lower bounds for the gaps in terms of the Kazhdan constant for the symplectic group when $g \ge 2$. As a byproduct, we also show that the finite regular directed graphs constructed by Jordan and Zaytman also has the same property.
We show that for every non-elementary hyperbolic group the Bowen–Margulis current associated with a strongly hyperbolic metric forms a unique group-invariant Radon measure class of maximal Hausdorff dimension on the boundary square. Applications include a characterization of roughly similar hyperbolic metrics via mean distortion.
We show the exact dimensionality of harmonic measures associated with random walks on groups acting on a hyperbolic space under a finite first moment condition, and establish the dimension formula by the entropy over the drift. We also treat the case when a group acts on a non-proper hyperbolic space acylindrically. Applications of this formula include continuity of the Hausdorff dimension with respect to driving measures and Brownian motions on regular coverings of a finite volume Riemannian manifold.
For every non-elementary hyperbolic group, we show that for every random walk with finitely supported admissible step distribution, the associated entropy equals the drift times the logarithmic volume growth if and only if the corresponding harmonic measure is comparable with Hausdorff measure on the boundary. Moreover, we introduce one parameter family of probability measures which interpolates a Patterson–Sullivan measure and the harmonic measure, and establish a formula of Hausdorff spectrum (multifractal spectrum) of the harmonic measure. We also give some finitary versions of dimensional properties of the harmonic measure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.