We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We obtain an approximation to the mean time to extinction and to the quasi-stationary distribution for the standard S–I–S epidemic model introduced by Weiss and Dishon (1971). These results are a combination and extension of the results of Norden (1982) for the stochastic logistic model, Oppenheim et al. (1977) for a model on chemical reactions, Cavender (1978) for the birth-and-death processes and Bartholomew (1976) for social diffusion processes.
Venereal disease is among one of the more active serious epidemics in the world today. Despite its prevalence and the ever-increasing literature on the mathematical treatment of epidemics very little progress has been made toward modelling the spread of this disease. Key features of the disease that help to account for this lack of progress are: (i) VD involves the cross-infection between two groups of individuals and (ii) VD is a recurrent disease. The heterosexual spread .of VD ties in the modelling of this disease with the yet unsolved problem in mathematical biology concerning the growth of two interacting species. In this paper we review the current state of the art in the stochastic modelling of this disease.
Motivated by the problem of solid catalytic particle attrition during chemical reactions we formulate a continuous-time Markov model to describe the shattering of a particle when it is assumed that particles can be classified into a small number of types by size. We then obtain a recursive expression for the joint probability generating function of the count of the different types of particle at time t and derive a system of differential equations for the mean number of particle counts and a system of matrix differential equations for the covariance matrix of the particle counts. Solutions to these differential equations are presented in an important special case.
For stationary Poisson or Poisson cluster processes ξ on R2 we study the distribution of the interpoint distances using the interpoint distance function and the nearest-neighbor indicator function . Here Sr (x) is the interior of a circle of radius r having center x, I(t) is that subset of D which has x ∊ D and St(x) ⊂ D and χ is the usual indicator function. We show that if the region D ⊂ R2 is large, then these functions are approximately distributed as Poisson processes indexed by and , where µ(D) is the Lebesgue measure of D.
Consider an array of binary random variables distributed over an m1(n) by m2(n) rectangular lattice and let Y1(n) denote the number of pairs of variables d, units apart and both equal to 1. We show that if the binary variables are independent and identically distributed, then under certain conditions Y(n) = (Y1(n), · ··, Yr(n)) is asymptotically multivariate normal for n large and r finite. This result is extended to versions of a model which provide clustering (repulsion) alternatives to randomness and have clustering (repulsion) parameter values nearly equal to 0. Statistical applications of these results are discussed.
We provide a formal proof of a conclusion due to Abakuks (1974) which states that the expected number of survivors in Downton's carrier-borne epidemic model approaches the limit (ρ /π)δ as the initial number of susceptibles tends to infinity. Here ρ denotes the relative removal rate for carriers, π denotes the conditional probability that an infected susceptible will become a carrier, δ denotes the Kronecker delta function and denotes the initial number of carriers.
In this article we give limiting results for arrays {Xij (m, n) (i, j) Dmn} of binary random variables distributed as particular types of Markov random fields over m x n rectangular lattices Dmn. Under some sparseness conditions which restrict the number of Xij (m, n)'s which are equal to one we show that the random variables (l = 1, ···, r)converge to independent Poisson random variables for 0 < d1 < d2 < · ·· < dr when m→∞ nd∞. The particular types of Markov random fields considered here provide clustering (or repulsion) alternatives to randomness and involve several parameters. The limiting results are used to consider statistical inference for these parameters. Finally, a simulation study is presented which examines the adequacy of the Poisson approximation and the inference techniques when the lattice dimensions are only moderately large.
We establish a sufficient condition for which the expected area under the trajectory of the carrier process is directly proportional to the expected number of removed carriers in the class of carrier-borne, right-shift, epidemic models studied by Severo (1969a). This result generalizes the previous work of Downton (1972) and Jerwood (1974) for some special cases of these models. We use the result to compute expected costs in the carrier-borne model due to Downton (1968) when it is unlikely that all the susceptibles will be infected. We conclude by showing that for the special case considered by Weiss (1965) this treatment of the expected cost is reasonable for populations with a large initial number of susceptibles.
Recently, Billard (1973) derived a solution to the forward equations of the general stochastic model. This solution contains some recursively defined constants. In this paper we solve these forward equations along each of the paths the process can follow to absorption. A convenient method of combining the solutions for the different paths results in a simplified non-recursive expression for the transition probabilities of the process.
A right-shift process is a Markov process with multidimensional finite state space on which the infinitesimal transition movement is a shifting of one unit from one coordinate to some other to its right. A multidimensional right-shift process consists of v ≧ 1 concurrent and dependent right-shift processes. In this paper applications of multidimensional right-shift processes to some well-known examples from epidemic theory, queueing theory and the Beetle probblem due to Lucien LeCam are discussed. A transformation which orders the Kolmogorov forward equations into a triangular array is provided and some computational procedures for solving the resulting system of equations are presented. One of these procedures is concerned with the problem of evaluating a given transition probability function rather than obtaining the solution to the complete system of forward equations. This particular procedure is applied to the problem of estimating the parameters of a multidimensional right-shift process which is observed at only a finite number of fixed timepoints.
We present a solution to a special system of Kolmogorov forward equations. We use this result to present a useful expression for the transition probabilities of the extended simple stochastic epidemic model and an epidemic model involving cross-infection between two otherwise isolated groups.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.