We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Regression is a fundamental prediction task common in data-centric engineering applications that involves learning mappings between continuous variables. In many engineering applications (e.g., structural health monitoring), feature-label pairs used to learn such mappings are of limited availability, which hinders the effectiveness of traditional supervised machine learning approaches. This paper proposes a methodology for overcoming the issue of data scarcity by combining active learning (AL) for regression with hierarchical Bayesian modeling. AL is an approach for preferentially acquiring feature-label pairs in a resource-efficient manner. In particular, the current work adopts a risk-informed approach that leverages contextual information associated with regression-based engineering decision-making tasks (e.g., inspection and maintenance). Hierarchical Bayesian modeling allow multiple related regression tasks to be learned over a population, capturing local and global effects. The information sharing facilitated by this modeling approach means that information acquired for one engineering system can improve predictive performance across the population. The proposed methodology is demonstrated using an experimental case study. Specifically, multiple regressions are performed over a population of machining tools, where the quantity of interest is the surface roughness of the workpieces. An inspection and maintenance decision process is defined using these regression tasks, which is in turn used to construct the active-learning algorithm. The novel methodology proposed is benchmarked against an uninformed approach to label acquisition and independent modeling of the regression tasks. It is shown that the proposed approach has superior performance in terms of expected cost—maintaining predictive performance while reducing the number of inspections required.
Accelerating COVID-19 Treatment Interventions and Vaccines (ACTIV) was initiated by the US government to rapidly develop and test vaccines and therapeutics against COVID-19 in 2020. The ACTIV Therapeutics-Clinical Working Group selected ACTIV trial teams and clinical networks to expeditiously develop and launch master protocols based on therapeutic targets and patient populations. The suite of clinical trials was designed to collectively inform therapeutic care for COVID-19 outpatient, inpatient, and intensive care populations globally. In this report, we highlight challenges, strategies, and solutions around clinical protocol development and regulatory approval to document our experience and propose plans for future similar healthcare emergencies.
Stepwise non-pharmaceutical interventions and health system changes implemented as part of the COVID-19 response have had implications on the incidence, diagnosis, and reporting of other communicable diseases. Here, we established the impact of the COVID-19 outbreak response on gastrointestinal (GI) infection trends using routinely collected surveillance data from six national English laboratory, outbreak, and syndromic surveillance systems using key dates of governmental policy to assign phases for comparison between pandemic and historic data. Following decreases across all indicators during the first lockdown (March–May 2020), bacterial and parasitic pathogens associated with foodborne or environmental transmission routes recovered rapidly between June and September 2020, while those associated with travel and/or person-to-person transmission remained lower than expected for 2021. High out-of-season norovirus activity was observed with the easing of lockdown measures between June and October 2021, with this trend reflected in laboratory and outbreak systems and syndromic surveillance indicators. Above expected increases in emergency department (ED) attendances may have reflected changes in health-seeking behaviour and provision. Differential reductions across specific GI pathogens are indicative of the underlying routes of transmission. These results provide further insight into the drivers for transmission, which can help inform control measures for GI infections.
Recent satellite measurements of glacier mass balance show mountain glaciers all over the world had generally negative mass balances in the first decades of the 21st century. We analyse archived data for surface mass balance and summer temperature for 37 Northern Hemisphere glaciers with data for 1961–2020. We compare mean annual balances for 1961–90 and 1991–2020, and for 25 glaciers explain the changes in annual balance by changes in winter and summer balances. Mean balances 1961–90 were already substantially negative for 19 out of the 25 glaciers. Changes in winter balances from 1961–90 to 1991–2020 average close to zero but changes in summer balance are strongly negative. Mean balance 1991–2020 is strongly correlated with change in summer balance, weakly correlated with winter balance change, and strongly correlated with mean balance 1961–90. We estimate 1991–2020 summer temperature anomalies for the 37 glaciers and confirm that summer temperature anomalies for 1991–2020 were higher for the Alps, by nearly 1.5°C, than for other areas. Substantial variations in the temperature – sensitivity of summer balances for individual glaciers of −0.2 to −1.0 m w.e. a−1°C−1 deserve further study.
Homeless shelter residents and staff may be at higher risk of SARS-CoV-2 infection. However, SARS-CoV-2 infection estimates in this population have been reliant on cross-sectional or outbreak investigation data. We conducted routine surveillance and outbreak testing in 23 homeless shelters in King County, Washington, to estimate the occurrence of laboratory-confirmed SARS-CoV-2 infection and risk factors during 1 January 2020–31 May 2021. Symptom surveys and nasal swabs were collected for SARS-CoV-2 testing by RT-PCR for residents aged ≥3 months and staff. We collected 12,915 specimens from 2,930 unique participants. We identified 4.74 (95% CI 4.00–5.58) SARS-CoV-2 infections per 100 individuals (residents: 4.96, 95% CI 4.12–5.91; staff: 3.86, 95% CI 2.43–5.79). Most infections were asymptomatic at the time of detection (74%) and detected during routine surveillance (73%). Outbreak testing yielded higher test positivity than routine surveillance (2.7% versus 0.9%). Among those infected, residents were less likely to report symptoms than staff. Participants who were vaccinated against seasonal influenza and were current smokers had lower odds of having an infection detected. Active surveillance that includes SARS-CoV-2 testing of all persons is essential in ascertaining the true burden of SARS-CoV-2 infections among residents and staff of congregate settings.