The Hele-Shaw–Cahn–Hilliard model, coupled with phase separation, is numerically simulated to demonstrate the formation of anomalous fingering patterns in a radial displacement of a partially miscible binary-fluid system. The composition of injected fluid is set to be less viscous than the displaced fluid and within the spinodal or metastable phase-separated region, in which the second derivative of the free energy is negative or positive, respectively. Because of phase separation, concentration evolves non-monotonically between the injected and displaced fluids. The simulations reveal four areas of the concentration distribution between the fluids: the inner core; the low-concentration grooves/high-concentration ridges; the isolated fluid fragments or droplets; the mixing zone. The grooves/ridges and the fragments/droplets, which are the unique features of phase separation, form in the spinodal and metastable regions. Four typical types of patterns are categorized: core separation (CS); fingering separation (FS); separation fingering (SF); lollipop fingering, in the order of the dominance of phase separation, respectively. For the patterns of CS and FS, isolated fluid fragments or droplets around the inner core are the main features. Fingering formation is better maintained with droplets in the SF pattern if the phase separation is relatively weaker than viscous fingering (VF). Even continuous fingers are well preserved in the case of dominant VF; phase separation results in lollipop-shaped fingers. The evolving trend of the patterns is in line with the experiments. These patterns are summarized in a pattern diagram, mainly by the magnitude of the second derivative of the free energy profile.