We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Several hypotheses may explain the association between substance use, posttraumatic stress disorder (PTSD), and depression. However, few studies have utilized a large multisite dataset to understand this complex relationship. Our study assessed the relationship between alcohol and cannabis use trajectories and PTSD and depression symptoms across 3 months in recently trauma-exposed civilians.
Methods
In total, 1618 (1037 female) participants provided self-report data on past 30-day alcohol and cannabis use and PTSD and depression symptoms during their emergency department (baseline) visit. We reassessed participant's substance use and clinical symptoms 2, 8, and 12 weeks posttrauma. Latent class mixture modeling determined alcohol and cannabis use trajectories in the sample. Changes in PTSD and depression symptoms were assessed across alcohol and cannabis use trajectories via a mixed-model repeated-measures analysis of variance.
Results
Three trajectory classes (low, high, increasing use) provided the best model fit for alcohol and cannabis use. The low alcohol use class exhibited lower PTSD symptoms at baseline than the high use class; the low cannabis use class exhibited lower PTSD and depression symptoms at baseline than the high and increasing use classes; these symptoms greatly increased at week 8 and declined at week 12. Participants who already use alcohol and cannabis exhibited greater PTSD and depression symptoms at baseline that increased at week 8 with a decrease in symptoms at week 12.
Conclusions
Our findings suggest that alcohol and cannabis use trajectories are associated with the intensity of posttrauma psychopathology. These findings could potentially inform the timing of therapeutic strategies.
Racial and ethnic groups in the USA differ in the prevalence of posttraumatic stress disorder (PTSD). Recent research however has not observed consistent racial/ethnic differences in posttraumatic stress in the early aftermath of trauma, suggesting that such differences in chronic PTSD rates may be related to differences in recovery over time.
Methods
As part of the multisite, longitudinal AURORA study, we investigated racial/ethnic differences in PTSD and related outcomes within 3 months after trauma. Participants (n = 930) were recruited from emergency departments across the USA and provided periodic (2 weeks, 8 weeks, and 3 months after trauma) self-report assessments of PTSD, depression, dissociation, anxiety, and resilience. Linear models were completed to investigate racial/ethnic differences in posttraumatic dysfunction with subsequent follow-up models assessing potential effects of prior life stressors.
Results
Racial/ethnic groups did not differ in symptoms over time; however, Black participants showed reduced posttraumatic depression and anxiety symptoms overall compared to Hispanic participants and White participants. Racial/ethnic differences were not attenuated after accounting for differences in sociodemographic factors. However, racial/ethnic differences in depression and anxiety were no longer significant after accounting for greater prior trauma exposure and childhood emotional abuse in White participants.
Conclusions
The present findings suggest prior differences in previous trauma exposure partially mediate the observed racial/ethnic differences in posttraumatic depression and anxiety symptoms following a recent trauma. Our findings further demonstrate that racial/ethnic groups show similar rates of symptom recovery over time. Future work utilizing longer time-scale data is needed to elucidate potential racial/ethnic differences in long-term symptom trajectories.
Smaller hippocampal volume has often been observed in patients with post-traumatic stress disorder (PTSD). However, there is no consensus whether this is a result of stress/trauma exposure, or constitutes a vulnerability factor for the development of PTSD. Second, it is unclear whether hippocampal volume normalizes with successful treatment of PTSD, or whether a smaller hippocampus is a risk factor for the persistence of PTSD.
Method
Magnetic resonance imaging (MRI) scans and clinical interviews were collected from 47 war veterans with PTSD, 25 healthy war veterans (combat controls) and 25 healthy non-military controls. All veterans were scanned a second time with a 6- to 8-month interval, during which PTSD patients received trauma-focused therapy. Based on post-treatment PTSD symptoms, patients were divided into a PTSD group who was in remission (n = 22) and a group in whom PTSD symptoms persisted (n = 22). MRI data were analysed with Freesurfer.
Results
Smaller left hippocampal volume was observed in PTSD patients compared with both control groups. Hippocampal volume of the combat controls did not differ from healthy controls. Second, pre- and post-treatment analyses of the PTSD patients and combat controls revealed reduced (left) hippocampal volume only in the persistent patients at both time points. Importantly, hippocampal volume did not change with treatment.
Conclusions
Our findings suggest that a smaller (left) hippocampus is not the result of stress/trauma exposure. Furthermore, hippocampal volume does not increase with successful treatment. Instead, we demonstrate for the first time that a smaller (left) hippocampus constitutes a risk factor for the persistence of PTSD.
Post-traumatic stress disorder (PTSD) is thought to be characterized by general heightened amygdala activation. However, this hypothesis is mainly based on specific studies presenting fear or trauma-related stimuli, hence, a thorough investigation of trauma-unrelated emotional processing in PTSD is needed.
Methods
In this study, 31 male medication-naive veterans with PTSD, 28 male control veterans (combat controls; CC) and 25 non-military men (healthy controls; HC) were included. Participants underwent functional MRI while trauma-unrelated neutral, negative and positive emotional pictures were presented. In addition to the group analyses, PTSD patients with and without major depressive disorder (MDD) were compared.
Results
All groups showed an increased amygdala response to negative and positive contrasts, but amygdala activation did not differ between groups. However, a heightened dorsal anterior cingulate cortex (dACC) response for negative contrasts was observed in PTSD patients compared to HC. The medial superior frontal gyrus was deactivated in the negative contrast in HC, but not in veterans. PTSD+MDD patients showed decreased subgenual ACC (sgACC) activation to all pictures compared to PTSD–MDD.
Conclusion
Our findings do not support the hypothesis that increased amygdala activation in PTSD generalizes to trauma-unrelated emotional processing. Instead, the increased dACC response found in PTSD patients implicates an attentional bias that extends to trauma-unrelated negative stimuli. Only HC showed decreased medial superior frontal gyrus activation. Finally, decreased sgACC activation was related to MDD status within the PTSD group.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.