We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We derive an upper bound on the density of Jones polynomials of knots modulo a prime number $p$, within a sufficiently large degree range: $4/p^7$. As an application, we classify knot Jones polynomials modulo two of span up to eight.
We define a metric filtration of the Gordian graph by an infinite family of 1-dense subgraphs. The nth subgraph of this family is generated by all knots whose fundamental groups surject to a symmetric group with parameter at least n, where all meridians are mapped to transpositions. Incidentally, we verify the Meridional Rank Conjecture for a family of knots with unknotting number one yet arbitrarily high bridge number.
Based on recent work by Futer, Kalfagianni and Purcell, we prove that the volume of sufficiently complicated positive braid links is proportional to the signature defect Δσ = 2g−σ.
The unknotting number of a knot is bounded from below by its slice genus. It is a well-known fact that the genera and unknotting numbers of torus knots coincide. In this paper we characterize quasipositive knots for which the genus bound is sharp: the slice genus of a quasipositive knot equals its unknotting number, if and only if the given knot appears in an unknotting sequence of a torus knot.
Quasipositive knots are transverse intersections of complex plane curves with the standard sphere $S^3 \subset {\mathbb C}^2$. It is known that any Alexander polynomial of a knot can be realized by a quasipositive knot. As a consequence, the Alexander polynomial cannot detect quasipositivity. In this paper we prove a similar result about Vassiliev invariants: for any oriented knot $K$ and any natural number $n$ there exists a quasipositive knot $Q$ whose Vassiliev invariants of order less than or equal to $n$ coincide with those of $K$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.