We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A key step toward understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organisation at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organisation of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex.
Aims
We aimed to evaluate the impact of sex on the spatial organisation of person-specific functional brain networks.
Method
We leveraged person-specific atlases of functional brain networks, defined using non-negative matrix factorisation, in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalised additive models to uncover associations between sex and the spatial layout (topography) of personalised functional networks (PFNs). We also trained support vector machines to classify participants’ sex from multivariate patterns of PFN topography.
Results
Sex differences in PFN topography were greatest in association networks including the frontoparietal, ventral attention and default mode networks. Machine learning models trained on participants’ PFNs were able to classify participant sex with high accuracy.
Conclusions
Sex differences in PFN topography are robust, and replicate across large-scale samples of youth. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.