We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this manuscript, we discuss the implementation and deployment of mobile integrated health and community paramedicine (MIH/CP) testing sites to provide screening, testing, and community outreach during the first months of the 2019 coronavirus disease (COVID-19) pandemic in the metropolitan region of Charlotte, North Carolina. This program addresses the need for an agile testing strategy during the current pandemic. We disclose the number of patients evaluated as “persons under investigation” and the proportion with positive severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) results from these sites. We describe how the programs were applied to patient care and include considerations on how additional staffing, scalability, and flexibility of these services may be applied to future patient and health care crises.
Methods:
This is a descriptive report of the implementation of MIH/CP test sites in our health care system’s early response to the COVID-19 pandemic in March 2020. Retrospective data on the number of patients and their associated demographics are reported here as raw data. No statistical analysis was performed.
Results:
Between March 15, 2020, and April 15, 2020, our 6 MIH/CP test sites evaluated 4342 patients. Of these, 401 patients (9.2%) had positive test results, 62.8% of whom were women. The estimated duration of each patient encounter under investigation was 3 to 5 minutes. The paramedics were able to perform a brief history, specific physical examination, and screening for signs of hypoxemic respiratory failure. There were no cases of accidental exposure or failure of personal protective equipment for the MIH/CP paramedics.
Conclusions:
In our health care system, we pivoted the traditional MIH/CP model to rapidly initiate remote drive-through testing for COVID-19 in pre-screened individuals. This model allowed us to test patients with suspected COVID-19 patients away from traditional health care sites and mitigate exposure to health care workers and other patients.
Twins Research Australia (TRA) is a community of twins and researchers working on health research to benefit everyone, including twins. TRA leads multidisciplinary research through the application of twin and family study designs, with the aim of sustaining long-term twin research that, both now and in the future, gives back to the community. This article summarizes TRA’s recent achievements and future directions, including new methodologies addressing causation, linkage to health, economic and educational administrative datasets and to geospatial data to provide insight into health and disease. We also explain how TRA’s knowledge translation and exchange activities are key to communicating the impact of twin studies to twins and the wider community. Building researcher capability, providing registry resources and partnering with all key stakeholders, particularly the participants, are important for how TRA is advancing twin research to improve health outcomes for society. TRA provides researchers with open access to its vibrant volunteer membership of twins, higher order multiples (multiples) and families who are willing to consider participation in research. Established four decades ago, this resource facilitates and supports research across multiple stages and a breadth of health domains.
Many children with autism spectrum disorder (ASD) exhibit difficulties with negative affect. Cognitive behavioural therapy (CBT) has been successfully adapted for individuals with ASD to treat these difficulties. In a wait-list control study, for example, group analyses showed promising results for young children with ASD using a developmentally adapted group CBT approach. This report examined response to group CBT in terms of individual-level change in young children with ASD. Eighteen children with ASD, aged 5–7 years, and their respective parents participated in treatment. Parents completed pre- and post-treatment measures of negative affect and related behaviours. Treatment responders and non-responders were grouped based on significant treatment outcomes as assessed by statistically significant change for lability/negativity and 20% decrease in intensity, duration or frequency of emotional outbursts. Results indicated that 67% of children met criteria as a treatment responder, showing meaningful improvement in at least two outcome measures. No significant group differences emerged for initial characteristics before treatment. Wilcoxon signed rank tests determined pre-/post-treatment change in parental confidence for each treatment responder group. Results indicated statistically significant increase for the treatment responder group in parent-reported confidence in their own ability and in their child's ability to manage the child's anger and anxiety, but these results were not significant for the treatment non-responder group. Results provide additional evidence that CBT can significantly decrease expressions of anger/anxiety in children with ASD as young as 5 years, yet also suggest need for further improvement.
By applying a display ecology to the Deeper, Wider, Faster proactive, simultaneous telescope observing campaign, we have shown a dramatic reduction in the time taken to inspect DECam CCD images for potential transient candidates and to produce time-critical triggers to standby telescopes. We also show how facilitating rapid corroboration of potential candidates and the exclusion of non-candidates improves the accuracy of detection; and establish that a practical and enjoyable workspace can improve the experience of an otherwise taxing task for astronomers. We provide a critical road test of two advanced displays in a research context—a rare opportunity to demonstrate how they can be used rather than simply discuss how they might be used to accelerate discovery.
Identification of the underlying cause of intellectual disability (ID) is important as it improves genetic counselling, management, adaptation; yet its etiologic heterogeneity is challenging and often leads to an expensive work-up.
Methods:
To improve this diagnostic trajectory, the multidisciplinary Complex Diagnostic Clinic (CDC) was established for ID patients with unexplained complex systemic and/or neurologic features that were referred to the CDC and evaluated by three medical specialists followed by multi-disciplinary rounds. Analyses included surveys and interviews, (retrospective) chart review, costs calculations and comparison.
Results:
24 children (9 male) were evaluated during seven clinics held over 16 months. The average patient age was 7 years 11 months (range 9 months-18 years). All the children had previously been seen by 2–10 specialist services. The diagnostic yield of the CDC was higher than expected with confirmed and working diagnoses in 11 (46%) and 9 (38%) children respectively. Cost-savings included fewer trips to hospital and fewer tests via more streamlined evaluations. Positive feedback was received from both families and medical professionals.
Conclusions:
The CDC represents an innovative model of personalized care. Specialist collaboration in the interpretation of relevant clinical, biochemical and genomic data resulted in diagnoses, where none had previously been possible.
The presence of oxygen throughout the nominally AlN nucleation layer of a RF assisted MBE grown III-N HEMT was revealed upon examination by Electron Energy Loss Spectroscopy (EELS) in a Scanning Transmission Electron Microscope (STEM). The nucleation layer generates the correct polarity (gallium face) required for producing a piezoelectric induced high mobility two dimensional electron gas at the AlGaN/GaN heterojunction. Only AlN or AlGaN nucleation layers have provided gallium face polarity in RF assisted MBE grown III-N’s on sapphire. The sample was grown at Cornell University in a Varian GenII MBE using an EPI Uni-Bulb nitrogen plasma source. The nucleation layer was examined in the Cornell University STEM using Annular Dark Field (ADF) imaging and Parallel Electron Energy Loss Spectroscopy (PEELS). Bright Field TEM reveals a relatively crystallographically sharp interface, while the PEELS reveal a chemically diffuse interface. PEELS of the nitrogen and oxygen K-edges at approximately 5-Angstrom steps across the GaN/AlN/sapphire interfaces reveals the presence of oxygen in the AlN nucleation layer. The gradient suggests that the oxygen has diffused into the nucleation region from the sapphire substrate forming this oxygen containing AlN layer. Based on energy loss near edge structure (ELNES), oxygen is in octahedral interstitial sites in the AlN and Al is both tetrahedrally and octahedrally coordinated in the oxygen rich region of the AlN.
The presence of oxygen throughout the nominally AlN nucleation layer of a RF assisted MBE grown III-N HEMT was revealed upon examination by Electron Energy Loss Spectroscopy (EELS) in a Scanning Transmission Electron Microscope (STEM). The nucleation layer generates the correct polarity (gallium face) required for producing a piezoelectric induced high mobility two dimensional electron gas at the AlGaN/GaN heterojunction. Only AlN or AlGaN nucleation layers have provided gallium face polarity in RF assisted MBE grown III-N's on sapphire. The sample was grown at Cornell University in a Varian GenII MBE using an EPI Uni-Bulb nitrogen plasma source. The nucleation layer was examined in the Cornell University STEM using Annular Dark Field (ADF) imaging and Parallel Electron Energy Loss Spectroscopy (PEELS). Bright Field TEM reveals a relatively crystallographically sharp interface, while the PEELS reveal a chemically diffuse interface. PEELS of the nitrogen and oxygen K-edges at approximately 5-Angstrom steps across the GaN/AlN/sapphire interfaces reveals the presence of oxygen in the AlN nucleation layer. The gradient suggests that the oxygen has diffused into the nucleation region from the sapphire substrate forming this oxygen containing AlN layer. Based on energy loss near edge structure (ELNES), oxygen is in octahedral interstitial sites in the AlN and Al is both tetrahedrally and octahedrally coordinated in the oxygen rich region of the AlN.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.