We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Peripheral inflammatory markers, including serum interleukin 6 (IL-6), are associated with depression, but less is known about how these markers associate with depression at different stages of the life course.
Methods
We examined the associations between serum IL-6 levels at baseline and subsequent depression symptom trajectories in two longitudinal cohorts: ALSPAC (age 10–28 years; N = 4,835) and UK Biobank (39–86 years; N = 39,613) using multilevel growth curve modeling. Models were adjusted for sex, BMI, and socioeconomic factors. Depressive symptoms were measured using the Short Moods and Feelings Questionnaire in ALSPAC (max time points = 11) and the Patient Health Questionnaire-2 in UK Biobank (max time points = 8).
Results
Higher baseline IL-6 was associated with worse depression symptom trajectories in both cohorts (largest effect size: 0.046 [ALSPAC, age 16 years]). These associations were stronger in the younger ALSPAC cohort, where additionally higher IL-6 levels at age 9 years was associated with worse depression symptoms trajectories in females compared to males. Weaker sex differences were observed in the older cohort, UK Biobank. However, statistically significant associations (pFDR <0.05) were of smaller effect sizes, typical of large cohort studies.
Conclusions
These findings suggest that systemic inflammation may influence the severity and course of depressive symptoms across the life course, which is apparent regardless of age and differences in measures and number of time points between these large, population-based cohorts.
The brain can be represented as a network, with nodes as brain regions and edges as region-to-region connections. Nodes with the most connections (hubs) are central to efficient brain function. Current findings on structural differences in Major Depressive Disorder (MDD) identified using network approaches remain inconsistent, potentially due to small sample sizes. It is still uncertain at what level of the connectome hierarchy differences may exist, and whether they are concentrated in hubs, disrupting fundamental brain connectivity.
Methods
We utilized two large cohorts, UK Biobank (UKB, N = 5104) and Generation Scotland (GS, N = 725), to investigate MDD case–control differences in brain network properties. Network analysis was done across four hierarchical levels: (1) global, (2) tier (nodes grouped into four tiers based on degree) and rich club (between-hub connections), (3) nodal, and (4) connection.
Results
In UKB, reductions in network efficiency were observed in MDD cases globally (d = −0.076, pFDR = 0.033), across all tiers (d = −0.069 to −0.079, pFDR = 0.020), and in hubs (d = −0.080 to −0.113, pFDR = 0.013–0.035). No differences in rich club organization and region-to-region connections were identified. The effect sizes and direction for these associations were generally consistent in GS, albeit not significant in our lower-N replication sample.
Conclusion
Our results suggest that the brain's fundamental rich club structure is similar in MDD cases and controls, but subtle topological differences exist across the brain. Consistent with recent large-scale neuroimaging findings, our findings offer a connectomic perspective on a similar scale and support the idea that minimal differences exist between MDD cases and controls.
Childhood trauma and adversity are common across societies and have strong associations with physical and psychiatric morbidity throughout the life-course. One possible mechanism through which childhood trauma may predispose individuals to poor psychiatric outcomes is via associations with brain structure. This study aimed to elucidate the associations between childhood trauma and brain structure across two large, independent community cohorts.
Methods
The two samples comprised (i) a subsample of Generation Scotland (n=1,024); and (ii) individuals from UK Biobank (n=27,202). This comprised n=28,226 for mega-analysis. MRI scans were processed using Free Surfer, providing cortical, subcortical, and global brain metrics. Regression models were used to determine associations between childhood trauma measures and brain metrics and psychiatric phenotypes.
Results
Childhood trauma associated with lifetime depression across cohorts (OR 1.06 GS, 1.23 UKB), and related to early onset and recurrent course within both samples. There was evidence for associations between childhood trauma and structural brain metrics. This included reduced global brain volume, and reduced cortical surface area with highest effects in the frontal (β=−0.0385, SE=0.0048, p(FDR)=5.43x10−15) and parietal lobes (β=−0.0387, SE=0.005, p(FDR)=1.56x10−14). At a regional level the ventral diencephalon (VDc) displayed significant associations with childhood trauma measures across both cohorts and at mega-analysis (β=−0.0232, SE=0.0039, p(FDR)=2.91x10−8). There were also associations with reduced hippocampus, thalamus, and nucleus accumbens volumes.
Discussion
Associations between childhood trauma and reduced global and regional brain volumes were found, across two independent UK cohorts, and at mega-analysis. This provides robust evidence for a lasting effect of childhood adversity on brain structure.
Major depressive disorder (MDD) is a polygenic disorder associated with brain alterations but until recently, there have been no brain-based metrics to quantify individual-level variation in brain morphology. Here, we evaluated and compared the performance of a new brain-based ‘Regional Vulnerability Index’ (RVI) with polygenic risk scores (PRS), in the context of MDD. We assessed associations with syndromal MDD in an adult sample (N = 702, age = 59 ± 10) and with subclinical depressive symptoms in a longitudinal adolescent sample (baseline N = 3,825, age = 10 ± 1; 2-year follow-up N = 2,081, age = 12 ± 1).
Methods
MDD-RVIs quantify the correlation of the individual’s corresponding brain metric with the expected pattern for MDD derived in an independent sample. Using the same methodology across samples, subject-specific MDD-PRS and six MDD-RVIs based on different brain modalities (subcortical volume, cortical thickness, cortical surface area, mean diffusivity, fractional anisotropy, and multimodal) were computed.
Results
In adults, MDD-RVIs (based on white matter and multimodal measures) were more strongly associated with MDD (β = 0.099–0.281, PFDR = 0.001–0.043) than MDD-PRS (β = 0.056–0.152, PFDR = 0.140–0.140). In adolescents, depressive symptoms were associated with MDD-PRS at baseline and follow-up (β = 0.084–0.086, p = 1.38 × 10−4−4.77 × 10−4) but not with any MDD-RVIs (β < 0.05, p > 0.05).
Conclusions
Our results potentially indicate the ability of brain-based risk scores to capture a broader range of risk exposures than genetic risk scores in adults and are also useful in helping us to understand the temporal origins of depression-related brain features. Longitudinal data, specific to the developmental period and on white matter measures, will be useful in informing risk for subsequent psychiatric illness.
Cognitive impairment associated with lifetime major depressive disorder (MDD) is well-supported by meta-analytic studies, but population-based estimates remain scarce. Previous UK Biobank studies have only shown limited evidence of cognitive differences related to probable MDD. Using updated cognitive and clinical assessments in UK Biobank, this study investigated population-level differences in cognitive functioning associated with lifetime MDD.
Methods.
Associations between lifetime MDD and cognition (performance on six tasks and general cognitive functioning [g-factor]) were investigated in UK Biobank (N-range 7,457–14,836, age 45–81 years, 52% female), adjusting for demographics, education, and lifestyle. Lifetime MDD classifications were based on the Composite International Diagnostic Interview. Within the lifetime MDD group, we additionally investigated relationships between cognition and (a) recurrence, (b) current symptoms, (c) severity of psychosocial impairment (while symptomatic), and (d) concurrent psychotropic medication use.
Results.
Lifetime MDD was robustly associated with a lower g-factor (β = −0.10, PFDR = 4.7 × 10−5), with impairments in attention, processing speed, and executive functioning (β ≥ 0.06). Clinical characteristics revealed differential profiles of cognitive impairment among case individuals; those who reported severe psychosocial impairment and use of psychotropic medication performed worse on cognitive tests. Severe psychosocial impairment and reasoning showed the strongest association (β = −0.18, PFDR = 7.5 × 10−5).
Conclusions.
Findings describe small but robust associations between lifetime MDD and lower cognitive performance within a population-based sample. Overall effects were of modest effect size, suggesting limited clinical relevance. However, deficits within specific cognitive domains were more pronounced in relation to clinical characteristics, particularly severe psychosocial impairment.
Substantial clinical heterogeneity of major depressive disorder (MDD) suggests it may group together individuals with diverse aetiologies. Identifying distinct subtypes should lead to more effective diagnosis and treatment, while providing more useful targets for further research. Genetic and clinical overlap between MDD and schizophrenia (SCZ) suggests an MDD subtype may share underlying mechanisms with SCZ.
Methods
The present study investigated whether a neurobiologically distinct subtype of MDD could be identified by SCZ polygenic risk score (PRS). We explored interactive effects between SCZ PRS and MDD case/control status on a range of cortical, subcortical and white matter metrics among 2370 male and 2574 female UK Biobank participants.
Results
There was a significant SCZ PRS by MDD interaction for rostral anterior cingulate cortex (RACC) thickness (β = 0.191, q = 0.043). This was driven by a positive association between SCZ PRS and RACC thickness among MDD cases (β = 0.098, p = 0.026), compared to a negative association among controls (β = −0.087, p = 0.002). MDD cases with low SCZ PRS showed thinner RACC, although the opposite difference for high-SCZ-PRS cases was not significant. There were nominal interactions for other brain metrics, but none remained significant after correcting for multiple comparisons.
Conclusions
Our significant results indicate that MDD case-control differences in RACC thickness vary as a function of SCZ PRS. Although this was not the case for most other brain measures assessed, our specific findings still provide some further evidence that MDD in the presence of high genetic risk for SCZ is subtly neurobiologically distinct from MDD in general.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.