We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recently, the discrete reversed Hardy–Littlewood–Sobolev inequality with infinite terms was proved. In this article, we study the attainability of its best constant. For this purpose, we introduce a discrete reversed Hardy–Littlewood–Sobolev inequality with finite terms. The constraint of parameters of this inequality is more relaxed than that of parameters of inequality with infinite terms. We here show the limit relations between their best constants and between their extremal sequences. Based on these results, we obtain the attainability of the best constant of the inequality with infinite terms in the noncritical case.
We use potential analysis to study the properties of positive solutions of a discrete Wolff-type equation
$$ \begin{align*} w(i)=W_{\beta,\gamma}(w^q)(i), \quad i \in \mathbb{Z}^n. \end{align*} $$
Here, $n \geq 1$, $\min \{q,\beta \}>0$, $1<\gamma \leq 2$ and $\beta \gamma <n$. Such an equation can be used to study nonlinear problems on graphs appearing in the study of crystal lattices, neural networks and other discrete models. We use the method of regularity lifting to obtain an optimal summability of positive solutions of the equation. From this result, we obtain the decay rate of $w(i)$ when $|i| \to \infty $.
In this paper, we are concerned with the non-existence of positive solutions of a Hartree–Poisson system:
\begin{equation*}\left\{\begin{aligned}&-\Delta u=\left(\frac{1}{|x|^{n-2}}\ast v^p\right)v^{p-1},\quad u \gt 0\ \text{in} \ \mathbb{R}^{n},\\&-\Delta v=\left(\frac{1}{|x|^{n-2}}\ast u^q\right)u^{q-1},\quad v \gt 0\ \text{in} \ \mathbb{R}^{n},\end{aligned}\right.\end{equation*}
where $n \geq3$ and $\min\{p,q\} \gt 1$. We prove that the system has no positive solution under a Serrin-type condition. In addition, the system has no positive radial classical solution in a Sobolev-type subcritical case. In addition, the system has no positive solution with some integrability in this Sobolev-type subcritical case. Finally, the relation between a Liouville theorem and the estimate of boundary blowing-up rates is given.
This paper is concerned with the p-Ginzburg–Landau (p-GL) type model with $p\neq 2$. First, we obtain global energy estimates and energy concentration properties by the singularity analysis. Next, we give a decay rate of $1-|u_\varepsilon |$ in the domain away from the singularities when $\varepsilon \to 0$, where $u_\varepsilon $ is a minimizer of p-GL functional with $p \in (1,2)$. Finally, we obtain a Liouville theorem for the finite energy solutions of the p-GL equation on $\mathbb {R}^2$.
In this paper, we study negative classical solutions and stable solutions of the following k-Hessian equation
$$F_k(D^2V) = (-V)^p\quad {\rm in}\;\; R^n$$
with radial structure, where n ⩾ 3, 1 < k < n/2 and p > 1. This equation is related to the extremal functions of the Hessian Sobolev inequality on the whole space. Several critical exponents including the Serrin type, the Sobolev type, and the Joseph-Lundgren type, play key roles in studying existence and decay rates. We believe that these critical exponents still come into play to research k-Hessian equations without radial structure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.