We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a real constant α, let $\pi _3^\alpha (G)$ be the minimum of twice the number of K2’s plus α times the number of K3’s over all edge decompositions of G into copies of K2 and K3, where Kr denotes the complete graph on r vertices. Let $\pi _3^\alpha (n)$ be the maximum of $\pi _3^\alpha (G)$ over all graphs G with n vertices.
The extremal function $\pi _3^3(n)$ was first studied by Győri and Tuza (Studia Sci. Math. Hungar.22 (1987) 315–320). In recent progress on this problem, Král’, Lidický, Martins and Pehova (Combin. Probab. Comput.28 (2019) 465–472) proved via flag algebras that$\pi _3^3(n) \le (1/2 + o(1)){n^2}$. We extend their result by determining the exact value of $\pi _3^\alpha (n)$ and the set of extremal graphs for all α and sufficiently large n. In particular, we show for α = 3 that Kn and the complete bipartite graph ${K_{\lfloor n/2 \rfloor,\lceil n/2 \rceil }}$ are the only possible extremal examples for large n.
A diregular bipartite tournament is a balanced complete bipartite graph whose edges are oriented so that every vertex has the same in- and out-degree. In 1981 Jackson showed that a diregular bipartite tournament contains a Hamilton cycle, and conjectured that in fact its edge set can be partitioned into Hamilton cycles. We prove an approximate version of this conjecture: for every ε > 0 there exists n0 such that every diregular bipartite tournament on 2n ≥ n0 vertices contains a collection of (1/2–ε)n cycles of length at least (2–ε)n. Increasing the degree by a small proportion allows us to prove the existence of many Hamilton cycles: for every c > 1/2 and ε > 0 there exists n0 such that every cn-regular bipartite digraph on 2n ≥ n0 vertices contains (1−ε)cn edge-disjoint Hamilton cycles.
We prove the following 30 year-old conjecture of Győri and Tuza: the edges of every n-vertex graph G can be decomposed into complete graphs C1,. . .,Cℓ of orders two and three such that |C1|+···+|Cℓ| ≤ (1/2+o(1))n2. This result implies the asymptotic version of the old result of Erdős, Goodman and Pósa that asserts the existence of such a decomposition with ℓ ≤ n2/4.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.