To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We determine explicit generators for the ring of modular forms associated with the moduli spaces of K3 surfaces with automorphism group $(\mathbb {Z}/2\mathbb {Z})^2$ and of Picard rank 13 and higher. The K3 surfaces in question carry a canonical Jacobian elliptic fibration and the modular form generators appear as coefficients in the Weierstrass-type equations describing these fibrations.
In this note, we study the asymptotic Chow stability of symmetric reflexive toric varieties. We provide examples of symmetric reflexive toric varieties that are not asymptotically Chow semistable. On the other hand, we also show that any weakly symmetric reflexive toric varieties which have a regular triangulation (so are special) are asymptotically Chow polystable. Furthermore, we give sufficient criteria to determine when a toric variety is asymptotically Chow polystable. In particular, two examples of toric varieties are given that are asymptotically Chow polystable, but not special. We also provide some examples of special polytopes, mainly in two or three dimensions, and some in higher dimensions.
We compute odd-degree genus 1 quasimap and Gromov–Witten invariants of moduli spaces of Higgs ${\rm{S}}{{\rm{L}}_2}$-bundles on a curve of genus $g \geqslant 2$. We also compute certain invariants for all prime ranks. This proves some parts of the author’s conjectures on quasimap invariants of moduli spaces of Higgs bundles. More generally, our methods provide a computation scheme for genus 1 quasimap and Gromov–Witten invariants in the case when degrees of maps are coprime to the rank. This requires an analysis of the localisation formula for certain Quot schemes parametrising higher-rank quotients on an elliptic curve. Invariants for degrees that are not coprime to the rank exhibit a very different structure for a reason that we explain.
We give a vanishing and classification result for holomorphic differential forms on smooth projective models of the moduli spaces of pointed K3 surfaces. We prove that there is no nonzero holomorphic k-form for $0<k<10$ and for even $k>19$. In the remaining cases, we give an isomorphism between the space of holomorphic k-forms with that of vector-valued modular forms ($10\leq k \leq 18$) or scalar-valued cusp forms (odd $k\geq 19$) for the modular group. These results are in fact proved in the generality of lattice-polarisation.
In this article, we study quasimaps to moduli spaces of sheaves on a $K3$ surface S. We construct a surjective cosection of the obstruction theory of moduli spaces of $\epsilon $-stable quasimaps. We then establish reduced wall-crossing formulas which relate the reduced Gromov–Witten theory of moduli spaces of sheaves on S and the reduced Donaldson–Thomas theory of $S\times C$, where C is a nodal curve. As applications, we prove the Hilbert-schemes part of the Igusa cusp form conjecture; higher-rank/rank-one Donaldson–Thomas correspondence with relative insertions on $S\times C$, if $g(C)\leq 1$; Donaldson–Thomas/Pandharipande–Thomas correspondence with relative insertions on $S\times \mathbb {P}^1$.
We axiomatise the algebraic properties of toroidal compactifications of (mixed) Shimura varieties and their automorphic vector bundles. A notion of generalised automorphic sheaf is proposed which includes sheaves of (meromorphic) sections of automorphic vector bundles with prescribed vanishing and pole orders along strata in the compactification, and their quotients. These include, for instance, sheaves of Jacobi forms and weakly holomorphic modular forms. Using this machinery, we give a short and purely algebraic proof of the proportionality theorem of Hirzebruch and Mumford.
We prove that the Kodaira dimension of the n-fold universal family of lattice-polarised holomorphic symplectic varieties with dominant and generically finite period map stabilises to the moduli number when n is sufficiently large. Then we study the transition of Kodaira dimension explicitly, from negative to nonnegative, for known explicit families of polarised symplectic varieties. In particular, we determine the exact transition point in the Beauville–Donagi and Debarre–Voisin cases, where the Borcherds $\Phi _{12}$ form plays a crucial role.
We study the moduli space of a product of stable varieties over the field of complex numbers, as defined via the minimal model program. Our main results are: (a) taking products gives a well-defined morphism from the product of moduli spaces of stable varieties to the moduli space of a product of stable varieties; (b) this map is always finite étale; and (c) this map very often is an isomorphism. Our results generalize and complete the work of Van Opstall in dimension $1$. The local results rely on a study of the cotangent complex using some derived algebro-geometric methods, while the global ones use some differential-geometric input.
We study the moduli spaces of polarised irreducible symplectic manifolds. By a comparison with locally symmetric varieties of orthogonal type of dimension 20, we show that the moduli space of polarised deformation K3[2] manifolds with polarisation of degree 2d and split type is of general type if d≥12.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.