We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is well known that the diffeomorphism type of the Milnor fibration of a (Newton) nondegenerate polynomial function f is uniquely determined by the Newton boundary of f. In the present paper, we generalize this result to certain degenerate functions, namely we show that the diffeomorphism type of the Milnor fibration of a (possibly degenerate) polynomial function of the form
$f=f^1\cdots f^{k_0}$
is uniquely determined by the Newton boundaries of
$f^1,\ldots , f^{k_0}$
if
$\{f^{k_1}=\cdots =f^{k_m}=0\}$
is a nondegenerate complete intersection variety for any
$k_1,\ldots ,k_m\in \{1,\ldots , k_0\}$
.
The symbolic analytic spread of an ideal $I$ is defined in terms of the rate of growth of the minimal number of generators of its symbolic powers. In this article, we find upper bounds for the symbolic analytic spread under certain conditions in terms of other invariants of $I$. Our methods also work for more general systems of ideals. As applications, we provide bounds for the (local) Kodaira dimension of divisors, the arithmetic rank, and the Frobenius complexity. We also show sufficient conditions for an ideal to be a set-theoretic complete intersection.
We compute the global log canonical thresholds of quasi-smooth well-formed complete intersection log del Pezzo surfaces of amplitude 1 in weighted projective spaces. As a corollary we show the existence of orbifold Kähler—Einstein metrics on many of them.
We obtain, via the formalism of tensor actions, a complete classification of the localizing subcategories of the stable derived category of any affine scheme that has hypersurface singularities or is a complete intersection in a regular scheme; in particular, this classifies the thick subcategories of the singularity categories of such rings. The analogous result is also proved for certain locally complete intersection schemes. It is also shown that from each of these classifications one can deduce the (relative) telescope conjecture.
In this paper we examine different problems regarding complete intersection varieties of high multidegree in a smooth complex projective variety. First we prove an existence theorem for jet differential equations that generalizes a theorem of Diverio. Then we show how one can deduce hyperbolicity for generic complete intersections of high multidegree and high codimension from the known results on hypersurfaces. Finally, motivated by a conjecture of Debarre, we focus on the positivity of the cotangent bundle of complete intersections, and prove some results towards this conjecture; among other things, we prove that a generic complete intersection surface of high multidegree in a projective space of dimension at least four has an ample cotangent bundle.
We prove that the space of smooth rational curves of degree $e$ on a general complete intersection of multidegree $(d_1, \ldots , d_m)$ in $\mathbb {P}^n$ is irreducible of the expected dimension if $\sum _{i=1}^m d_i \lt (2n+m+1)/3$ and $n$ is sufficiently large. This generalizes a result of Harris, Roth and Starr [Rational curves on hypersurfaces of low degree, J. Reine Angew. Math. 571 (2004), 73–106], and is achieved by proving that the space of conics passing through any point of a general complete intersection has constant dimension if $\sum _{i=1}^m d_i$ is small compared to $n$.
We generalize Gaeta’s theorem to the family of determinantal schemes. In other words, we show that the schemes defined by minors of a fixed size of a matrix with polynomial entries belong to the same G-biliaison class of a complete intersection whenever they have maximal possible codimension, given the size of the matrix and of the minors that define them.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.