We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Albert algebras, a specific kind of Jordan algebra, are naturally distinguished objects among commutative nonassociative algebras and also arise naturally in the context of simple affine group schemes of type $\mathsf {F}_4$, $\mathsf {E}_6$, or $\mathsf {E}_7$. We study these objects over an arbitrary base ring R, with particular attention to the case $R = \mathbb {Z}$. We prove in this generality results previously in the literature in the special case where R is a field of characteristic different from 2 and 3.
Let Tn+1(R) be the algebra of all upper triangular n+1 by n+1 matrices over a 2-torsionfree commutative ring R with identity. In this paper, we give a complete description of the Jordan automorphisms of Tn+1(R), proving that every Jordan automorphism of Tn+1(R) can be written in a unique way as a product of a graph automorphism, an inner automorphism and a diagonal automorphism for n ≥ 1.
We construct the Weil representation of the Kantor-Koecher-Tits Lie algebra g associated to a simple real Jordan algebra V. Later we introduce a family of integral operators intertwining the Weil representation with the infinitesimal representations of the degenerate principal series of the conformal group G of the Jordan algebra V. The decomposition of L2(V) in the case of Jordan algebra of real square matrices is given using this construction.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.