The generalized Gompertz distribution—an extension of the standard Gompertz distribution as well as the exponential distribution and the generalized exponential distribution—offers more flexibility in modeling survival or failure times as it introduces an additional parameter, which can account for different shapes of hazard functions. This enhances its applicability in various fields such as actuarial science, reliability engineering and survival analysis, where more complex survival models are needed to accurately capture the underlying processes. The effect of heterogeneity has generated increased interest in recent times. In this article, multivariate chain majorization methods are exploited to develop stochastic ordering results for extreme-order statistics arising from independent heterogeneous generalized Gompertz random variables with increased degree of heterogeneity.