In this article, a circularly polarized dielectric resonator antenna (DRA) array with conformal characteristics and improved specific absorption rate (SAR) has been proposed for X-band applications. The proposed structure has been fed through the corporate feed network which excites a radiating mode inside DRA, i.e.,
$TE_{1\delta1}$. This mode has been utilized to enhance the impedance bandwidth which is below −10 dB for both the E- and H-plane so as to meet the requirements of next-generation defense communication and low-cost satellite systems. To generate the axial ratio (AR), the extended off-set feed has been employed to provide the required 90
$^{\circ}$ phase shift. Further, in order to enhance the gain and reduce the SAR, an electromagnetic band gap structure has been used as a reflector. Furthermore, multiple arrays have been introduced to extend the coverage area through beam-forming. The proposed design has been fabricated for the experimental validation. The measured IBW and ARBW is 34.74% and 12.2%, respectively. The gain is 10.1 dBic throughout the band of operation along with the radiation efficiency above 85% in various bending conditions. The SAR is much below the permissible limit of 1.6 W/kg. Thus, the proposed array is compact, and it clearly achieves a smaller footprint, better IBW, ARBW and a low SAR with potential prospect for X-band purposes.