Creative thinking is a crucial step in the design ideation process, where analogical reasoning plays a vital role in expanding the design concept space. The emergence of Generative AI has brought a significant revolution in co-creative systems, with a growing number of studies on Design-by-Analogy support tools. However, there is a lack of studies investigating the creative performance of Large Language Model (LLM)-generated analogical content and benchmarking of language models in creative tasks such as design ideation. Through this study, we aim to (i) investigate the effect of creativity heuristics by leveraging LLMs to generate analogical stimuli for novice designers in ideation tasks and (ii) evaluate and benchmark language models across analogical creative tasks. We developed a support tool based on the proposed conceptual framework and validated it by conducting controlled ideation experiments with 24 undergraduate design students. Groups assisted with the support tool generated higher-rated ideas, thus validating the proposed framework and the effectiveness of analogical reasoning for augmenting creative output with LLMs. Benchmarking of the models revealed significant differences in the creative performance of analogies across various language models, suggesting that future studies should focus on evaluating language models across creative, subjective tasks.