To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define several notions of a limit point on sequences with domain a barrier in $[\omega ]^{<\omega }$ focusing on the two dimensional case $[\omega ]^2$. By exploring some natural candidates, we show that countable compactness has a number of generalizations in terms of limits of high dimensional sequences and define a particular notion of $\alpha $-countable compactness for $\alpha \leq \omega _1$. We then focus on dimension 2 and compare 2-countable compactness with notions previously studied in the literature. We present a number of counterexamples showing that these classes are different. In particular assuming the existence of a Ramsey ultrafilter, a subspace of $\beta \omega $ which is doubly countably compact whose square is not countably compact, answering a question of T. Banakh, S. Dimitrova, and O. Gutik [3]. The analysis of this construction leads to some possibly new types of ultrafilters related to discrete, P-points and Ramsey ultrafilters.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.