We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Building on our previous work on enriched universal algebra, we define a notion of enriched language consisting of function and relation symbols whose arities are objects of the base of enrichment $\mathcal {V}$. In this context, we construct atomic formulas and define the regular fragment of our enriched logic by taking conjunctions and existential quantification of those. We then characterize $\mathcal {V}$-categories of models of regular theories as enriched injectivity classes in the $\mathcal {V}$-category of structures. These notions rely on the choice of an orthogonal factorization system $(\mathcal {E},\mathcal {M})$ on $\mathcal {V}$ which will be used, in particular, to interpret relation symbols and existential quantification.
We explore the possibilities for elementary embeddings
$j : M \to N$
, where M and N are models of ZFC with the same ordinals,
$M \subseteq N$
, and N has access to large pieces of j. We construct commuting systems of such maps between countable transitive models that are isomorphic to various canonical linear and partial orders, including the real line
${\mathbb R}$
.
Let P be a forcing notion and
$G\subseteq P$
its generic subset. Suppose that we have in
$V[G]$
a
$\kappa{-}$
complete ultrafilter1,2W over
$\kappa $
. Set
$U=W\cap V$
.
We study the notion of non-trivial elementary embeddings under the assumption that V satisfies ZFC without Power Set but with the Collection Scheme. We show that no such embedding can exist under the additional assumption that it is cofinal and either is a set or that the scheme of Dependent Choices of arbitrary length holds. We then study failures of instances of Collection in symmetric submodels of class forcings.
We give a sharper version of a theorem of Rosický, Trnková and Adámek [13], and a new proof of a theorem of Rosický [12], both about colimits in categories of structures. Unlike the original proofs, which use category-theoretic methods, we use set-theoretic arguments involving elementary embeddings given by large cardinals such as α-strongly compact and C(n)-extendible cardinals.
Working in the theory ”ZF + There is a nontrivial elementary embedding j : V → V“, we show that a final segment of cardinals satisfies certain square bracket finite and infinite exponent partition relations. As a corollary to this, we show that this final segment is composed of Jonsson cardinals. We then show how to force and bring this situation down to small alephs. A prototypical result is the construction of a model for ZF in which every cardinal μ ≥ ℵ2 satisfies the square bracket infinite exponent partition relation . We conclude with a discussion of some consistency questions concerning different versions of the axiom asserting the existence of a nontrivial elementary embedding j: V → V. By virtue of Kunen's celebrated inconsistency result, we use only a restricted amount of the Axiom of Choice.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.