To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report experimental optical and thermodynamical studies of convection cooling for face cooling of laser amplifier disks. Amplifier maquettes are used to explore the flow regime in laser relevant conditions, and to measure heat exchange coefficients $h$. We thus benchmark analytical and numerical predictions, based on common models of turbulence. The ${y}^{+}$ model appears best suited to compute $h$ in the laminar regime, and the Reynolds-Average Navier–Stokes model in the weakly turbulent regime. By strioscopic imaging, we examine the optical properties of the flows, in particular the onset of a striation instability occurring well before the transition to turbulence. At higher Reynolds numbers, the unstable thermal layer is shown to be pushed back onto the surface, suppressing effectively the wavefront distortions from striations. This super-forced thermal regime may be of high interest for very high thermal loads.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.