Restriction is a natural quasi-order on d-way tensors. We establish a remarkable aspect of this quasi-order in the case of tensors over a fixed finite field; namely, that it is a well-quasi-order: it admits no infinite antichains and no infinite strictly decreasing sequences. This result, reminiscent of the graph minor theorem, has important consequences for an arbitrary restriction-closed tensor property X. For instance, X admits a characterisation by finitely many forbidden restrictions and can be tested by looking at subtensors of a fixed size. Our proof involves an induction over polynomial generic representations, establishes a generalisation of the tensor restriction theorem to other such representations (e.g., homogeneous polynomials of a fixed degree), and also describes the coarse structure of any restriction-closed property.