Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T09:44:54.672Z Has data issue: false hasContentIssue false

Chapter 4 - Ovarian Ultrasonography in Polycystic Ovary Syndrome

Published online by Cambridge University Press:  13 May 2022

Gabor T. Kovacs
Affiliation:
Monash University, Melbourne, Australia
Bart Fauser
Affiliation:
University Medical Center, Utrecht, Netherlands
Richard S. Legro
Affiliation:
Penn State Medical Center, Hershey, PA, USA
Get access

Summary

Polycystic ovarian morphology (PCOM) on ultrasonography is a cardinal feature of polycystic ovary syndrome (PCOS). The relevance of polycystic ovaries to the clinical spectrum of PCOS was reinforced by the recent findings of the 2018 International Evidence-Based Guideline for the Assessment and Management of PCOS. Similar to other cardinal features, PCOM is not required for the diagnosis of PCOS. Rather, the guideline recommends that the presence or absence of PCOM be established to enable the identification of the complete PCOS phenotype. At minimum, identification of PCOM on ultrasonography requires skilled assessments of antral follicle number and ovarian size in order to accurately gauge the presence of follicle excess and/or ovarian enlargement. Other ultrasonographic features of ovarian morphology including characteristics of the ovarian stroma or follicle arrangement may be helpful in corroborating the presence of PCOM but have less diagnostic accuracy for the condition of PCOS. In this chapter, we review the evolution of criteria used to define PCOM on ultrasonography and provide a basis for follicle excess and ovarian enlargement to define PCOM. Practical considerations related to the reproducible evaluation of ovarian features are provided and their potential utility as biomarkers of health outcomes across the reproductive life course discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stein, I. F. and Leventhal, M. L. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 1935; 29(2): 181191.Google Scholar
Goldzieher, J. W. and Green, J. A. The polycystic ovary: I. Clinical and histologic features. J Clin Endocrinol Metab 1962; 22: 325338.CrossRefGoogle ScholarPubMed
Hughesdon, P. E. Morphology and morphogenesis of the Stein-Leventhal ovary and of so-called “hyperthecosis.” Obs Gynecol Surv 1982; 37(2): 5977.Google Scholar
Maciel, G. A. R., Baracat, E. C., Benda, J. A. et al. Stockpiling of transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004; 89(11): 53215327.Google Scholar
Franks, S., Mason, H. and Willis, D. Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol 2000; 163(1–2): 4952.Google Scholar
Swanson, M., Sauerbrei, E. E. and Cooperberg, P. L. Medical implications of ultrasonically detected polycystic ovaries. J Clin Ultrasound 1981; 9(5): 219222.Google Scholar
Saxton, D. W., Farquhar, C. M., Rae, T., Beard, R. W., Anderson, M. C. and Wadsworth, J. Accuracy of ultrasound measurements of female pelvic organs. Br J Obs Gynaecol 1990; 97(8): 695699.Google Scholar
Eden, J. A., Jones, J., Carter, G. D. and Alaghband-Zadeh, J. A comparison of follicular fluid levels of Insulin-like Growth Factor-1 in normal dominant and cohort follicles, polycystic and multicystic ovaries. Clin Endocrinol (Oxf) 1988; 29(3): 327336.Google Scholar
Hull, M. G. R. Epidemiology of infertility and polycystic ovarian disease: Endocrinological and demographic studies. Gynecol Endocrinol 1987; 1(3): 235245.Google Scholar
Zawadzki, J. K. and Dunaif, A. Diagnostic criteria for polycystic ovary syndrome: Towards a rational approach. In Dunaif, A., Givens, J. R., Haseltine, F. P. and Merriam, G. R., eds. Polycystic Ovary Syndrome. Boston, MA: Blackwell Scientific, 1992: 377384.Google Scholar
Dewailly, D., Lujan, M. E., Carmina, E. et al. Definition and significance of polycystic ovarian morphology: A task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum Reprod Updat 2014; 20(3): 334352.CrossRefGoogle ScholarPubMed
Azziz, R., Carmina, E., Dewailly, D. et al. Positions statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. J Clin Endocrinol Metab 2006; 91(11): 42374245.Google Scholar
Jonard, S., Robert, Y., Cortet-Rudelli, C., Pigny, P., Decanter, C. and Dewailly, D. Ultrasound examination of polycystic ovaries: Is it worth counting the follicles? Hum Reprod 2003; 18(3): 598603.Google Scholar
Lujan, M. E., Jarrett, B.Y., Brooks, E. D. et al. Updated ultrasound criteria for polycystic ovary syndrome: Reliable thresholds for elevated follicle population and ovarian volume. Hum Reprod 2013; 28(5): 13611368.Google Scholar
Dewailly, D., Gronier, H., Poncelet, E. et al. Diagnosis of polycystic ovary syndrome (PCOS): Revisiting the threshold values of follicle count on ultrasound and of the serum AMH level for the definition of polycystic ovaries. Hum Reprod 2011; 26(11): 31233129.Google Scholar
Teede, H. J., Misso, M. L., Costello, M. F. et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod 2018; 33(9): 117.Google Scholar
Adams, J., Polson, D. W. and Franks, S. Prevalence of polycystic ovaries in women with anovulation and idiopathic hirsutism. Br Med J (Clin Res Ed) 1986; 293(6543): 355359.Google Scholar
Christ, J. P., Willis, A. D., Brooks, E. D. et al. Follicle number, not assessments of the ovarian stroma, represents the best ultrasonographic marker of polycystic ovary syndrome. Fertil Steril 2014; 101(1): 280287.CrossRefGoogle Scholar
Jarrett, B. Y., Vanden Brink, H., Brooks, E. D. et al. Impact of right–left differences in ovarian morphology on the ultrasound diagnosis of polycystic ovary syndrome. Fertil Steril 2019; 112(5): 939946.CrossRefGoogle ScholarPubMed
Barbierit, R. L., Makris, A., Randall, R. W., Daniels, G., Kistner, R. W. and Ryan, K. J. Insulin stimulates androgen accumulation in incubations of Ovarian Stroma Obtained from Women with Hyperandrogenism*. J Clin Endocrinol Metab 1986, 62(5): 904910.Google Scholar
Christ, J. P., Vanden Brink, H., Brooks, E. D., Pierson, R. A., Chizen, D. R. and Lujan, M. E. Ultrasound features of polycystic ovaries relate to degree of reproductive and metabolic disturbance in polycystic ovary syndrome. Fertil Steril 2015; 103(3): 787794.Google Scholar
Lam, P. M., Johnson, I. R. and Raine-Fenning, N. J. Three-dimensional ultrasound features of the polycystic ovary and the effect of different phenotypic expressions on these parameters. Hum Reprod 2007; 22(12): 31163123.Google Scholar
Battaglia, C., Battaglia, B., Morotti, E. et al. Two- and three-dimensional sonographic and color Doppler techniques for diagnosis of polycystic ovary syndrome: The stromal/ovarian volume ratio as a new diagnostic criterion. J Ultrasound Med 2012; 31(7): 10151024.CrossRefGoogle ScholarPubMed
Raine-Fenning, N. J., Campbell, B. K., Clewes, J. S., Kendall, N. R. and Johnson, I. R. The interobserver reliability of three-dimensional power Doppler data acquisition within the female pelvis. Ultrasound Obs Gynecol 2004; 23(5): 501508.Google Scholar
Teede, H., Misso, M., Tassone, E. C. et al. Anti-Müllerian hormone in PCOS: A review informing international guidelines. Trends Endocrinol Metab 2019; 30(7): 467478.Google Scholar
Coelho Neto, M. A., Ludwin, A., Borrell, A. et al. Counting ovarian antral follicles by ultrasound: A practical guide. Ultrasound Obstet Gynecol 2018; 51(1): 1020.Google Scholar
Broekmans, F. J. M., de Ziegler, D., Howles, C. M., Gougeon, A., Trew, G. and Olivennes, F. The antral follicle count: Practical recommendations for better standardization. Fertil Steril 2010; 94(3): 10441051.Google Scholar
Lujan, M. E., Chizen, D. R., Peppin, A. K. et al. Improving inter-observer variability in the evaluation of ultrasonographic features of polycystic ovaries. Reprod Biol Endocrinol 2008; 6: 30.Google Scholar
Lujan, M. E., Brooks, E. D., Kepley, A. L., Chizen, D. R., Pierson, R. A. and Peppin, A. K. Grid analysis improves reliability in follicle counts made by ultrasonography in women with polycystic ovary syndrome. Ultrasound Med Biol 2010; 36(5): 712718.Google Scholar
Vanden Brink, H., Pisch, A. and Lujan, M. A comparison of two and three-dimensional ultrasonographic methods for the evaluation of follicle counts and classification of polycystic ovarian morphology. Fertil Steril 2021; 115(3): 761770.Google Scholar
Deb, S., Campbell, B. K., Clewes, J. S. and Raine-Fenning, N. J. Quantitative analysis of antral follicle number and size: A comparison of two-dimensional and automated three-dimensional ultrasound techniques. Ultrasound Obstet Gynecol 2010; 35(3): 354360.Google Scholar
Hagen, C. P., Mouritsen, A., Mieritz, M. G. et al. Circulating AMH reflects ovarian morphology by magnetic resonance imaging and 3D ultrasound in 121 healthy girls. J Clin Endocrinol Metab 2015; 100(3): 880890.CrossRefGoogle ScholarPubMed
Rackow, B. W., Vanden Brink, H., Hammers, L., Flannery, C. A., Lujan, M. E. and Burgert, T. S. Ovarian morphology by transabdominal ultrasound correlates with reproductive and metabolic disturbance in adolescents with PCOS. J Adolesc Heal 2018; 62(3): 288293.Google Scholar
Hernandez, M. I., López, P., Gaete, X. et al. Hyperandrogenism in adolescent girls: Relationship with the somatotrophic axis. J Pediatr Endocrinol Metab 2017; 30(5): 561568.CrossRefGoogle ScholarPubMed
Fruzzetti, F., Campagna, A. M., Perini, D. and Carmina, E. Ovarian volume in normal and hyperandrogenic adolescent women. Fertil Steril 2015; 104(1): 196199.Google Scholar
Alsamarai, S., Adams, J. M., Murphy, M. K. et al. Criteria for polycystic ovarian morphology in polycystic ovary syndrome as a function of age. J Clin Endocrinol Metab 2009; 94(12): 49614970.Google Scholar
Kim, H. J., Adams, J. M., Gudmundsson, J. A., Arason, G., Pau, C. T., Welt, C. K. Polycystic ovary morphology: Age-based ultrasound criteria. Fertil Steril 2017; 108(3): 548553.Google Scholar
Ahmad, A. K., Quinn, M., Kao, C. N., Greenwood, E., Cedars, M. I. and Huddleston, H. G. Improved diagnostic performance for the diagnosis of polycystic ovary syndrome using age-stratified criteria. Fertil Steril 2019; 111(4): 787–793.e2.Google Scholar
Lie Fong, S., Laven, J. S. E., Duhamel, A. and Dewailly, D. Polycystic ovarian morphology and the diagnosis of polycystic ovary syndrome: Redefining threshold levels for follicle count and serum anti-Müllerian hormone using cluster analysis. Hum Reprod 2017; 32(8): 17231731.Google Scholar
Quinn, M. M., Kao, C. N., Ahmad, A. K. et al. Age-stratified thresholds of anti-Müllerian hormone improve prediction of polycystic ovary syndrome over a population-based threshold. Clin Endocrinol (Oxf) 2017; 87(6): 733740.Google Scholar
Cooney, L. G. and Dokras, A. Beyond fertility: Polycystic ovary syndrome and long-term health. Fertil Steril 2018; 110(5): 794809.Google Scholar
Jonard, S. and Dewailly, D. The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum Reprod Update 2004; 10(2): 107117.Google Scholar
Dewailly, D., Lujan, M. E., Carmina, E. et al. Definition and significance of polycystic ovarian morphology: A task force report from the androgen excess and polycystic ovary syndrome society. Hum Reprod Updat 2014; 20(3): 334352.Google Scholar
Reid, S. P., Kao, C., Pasch, L., Shinkai, K., Cedars, M. I. and Huddleston, H. G. Ovarian morphology is associated with insulin resistance in women with polycystic ovary syndrome: A cross sectional study. Fertil Res and Pract 2017; 3: 8. https://doi.org/10.1186/s40738-017-0035-zCrossRefGoogle ScholarPubMed
Sipahi, M., Tokgöz, V. Y., Keskin, Ö. , Atasever, M., Menteşe, A. and Demir, S. Is ovarian volume a good predictor to determine metabolic syndrome development in polycystic ovary patients. J Obstet Gynaecol (Lahore) 2019; 39(3): 372376.CrossRefGoogle ScholarPubMed
Kim, J. J., Hwang, K. R., Chae, S. J., Yoon, S. H. and Choi, Y. M. Impact of the newly recommended antral follicle count cutoff for polycystic ovary in adult women with polycystic ovary syndrome. Hum Reprod 2020; 35(3): 652659.Google Scholar
Quinn, M. M., Kao, C. N., Ahmad, A. et al. Raising threshold for diagnosis of polycystic ovary syndrome excludes population of patients with metabolic risk. Fertil Steril 2016; 106(5): 12441251.CrossRefGoogle ScholarPubMed
Peigné, M., Catteau-Jonard, S., Robin, G., Dumont, A., Pigny, P. and Dewailly, D. The numbers of 2–5 and 6–9 mm ovarian follicles are inversely correlated in both normal women and in polycystic ovary syndrome patients: What is the missing link? Hum Reprod 2018; 33(4): 706714.Google Scholar
Holte, J., Brodin, T., Berglund, L., Hadziosmanovic, N., Olovsson, M. and Bergh, T. Antral follicle counts are strongly associated with live-birth rates after assisted reproduction, with superior treatment outcome in women with polycystic ovaries. Fertil Steril 2011; 96(3): 594599.Google Scholar
Fauser, B. C. J. M., Diedrich, K., Devroey, P. and Evian Annual Reproduction (EVAR) Workshop Group. Predictors of ovarian response: progress towards individualized treatment in ovulation induction and ovarian stimulation. Hum Reprod Update 2008; 14(1): 114.CrossRefGoogle ScholarPubMed
Kazemi, M., Pierson, R. A., McBreairty, L. E., Chilibeck, P. D., Zello, G. A. and Chizen, D. R. A randomized controlled trial of a lifestyle intervention with longitudinal follow-up on ovarian dysmorphology in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 2020; 92(6): 525535.Google Scholar
Nylander, M., Frøssing, S., Clausen, H. V., Kistorp, C., Faber, J. and Skouby, S. O. Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: A randomized clinical trial. Reprod Biomed Online 2017; 35(1): 121127.Google Scholar
Christ, J. P. and Falcone, T. Bariatric surgery improves hyperandrogenism, menstrual irregularities, and metabolic dysfunction among women with polycystic ovary syndrome (PCOS). Obes Surg 2018; 28(8): 21712177.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×