Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-15T06:04:03.838Z Has data issue: false hasContentIssue false

14 - Episodic processes, invasion and faunal mosaics in evolutionary and ecological time

from Part V - Effects Due to Invading Species, Habitat Loss and Climate Change

Published online by Cambridge University Press:  05 March 2013

Klaus Rohde
Affiliation:
University of New England, Australia
Get access

Summary

Episodic processes and faunal structure

Episodes of ecological perturbation and faunal turnover represent crises for global biodiversity and have occurred periodically across Earth’s history on a continuum linking deep evolutionary and shallow ecological time (Briggs, 1995; Hallam & Wignall, 1997; Hoberg & Brooks, 2008; Stigall, 2010). Major extinction events and biodiversity crises across the 540 million years of the Phanerozoic are equated with periods of maximum ecological disruption associated with geological, oceanographic and atmospheric (climatological) mechanisms which have influenced patterns and processes for diversification (dispersal and isolation), species diversity, community and faunal structure, turnover, and distribution on global to regional and landscape scales (Briggs, 1995; Stigall, 2012a, 2012b). Episodic or punctuated events set the stage for patterns of diversification and faunal associations downstream for extended periods of time (Eldredge & Gould, 1972; Eldredge et al., 2005). In essence, the cascading effects of ecological disruption may canalize faunal structure, eliminating evolutionary potential through differential extinction events, but concurrently may heighten faunal mixing and interchange through breakdown in ecological isolation during biotic expansion and geographic colonization (Rode & Lieberman, 2005; Hoberg & Brooks, 2010). Paradoxically, ecological crises may also be precursors for subsequent radiation and diversification in taxa which have persisted through events of maximal ecological perturbations (e.g., Hoberg & Brooks, 2008), and elevated rates for speciation are often linked to periods of rapid climatological and environmental change (Vrba, 1996). These processes and their influence on faunal structure and diversity are equivalent in evolutionary and ecological time and thus can serve as analogs for understanding and predicting the general outcomes of invasion and range shifts in contemporary communities and faunas (Hoberg, 2010; Hoberg & Brooks, 2010; Peterson, 2011; Stigall, 2012b).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosta, S. J., & Klemens, J. A. (2008). Ecological fitting by phenotypically flexible genotyopes: implications for species associations, community assembly and evolution. Ecology Letters, 11, 1–12.CrossRefGoogle Scholar
Arenas, M., Ray, N., Currat, M., & Excoffier, L. (2012). Consequences of range contractions and range shifts on molecular diversity. Molecular Biology and Evolution, 29, 207–218.CrossRefGoogle ScholarPubMed
Beard, C. (2002). East of Eden at the Paleocene/Eocene boundary. Science, 195, 2028–2029.CrossRefGoogle Scholar
Briggs, J. C. (1995). Global Biogeography. Amsterdam: Elsevier.Google Scholar
Briggs, J. C. (2003). Marine centres of origin as evolutionary engines. Journal of Biogeography, 30, 1–18.CrossRefGoogle Scholar
Brooks, D. R., & Ferrao, A. (2005). The historical biogeography of coevolution: emerging infectious diseases are evolutionary accidents waiting to happen. Journal of Biogeography, 32, 1291–1299.CrossRefGoogle Scholar
Brooks, D. R., & Hoberg, E. P. (2006). Systematics and emerging infectious diseases: from management to solution. Journal of Parasitology, 92, 426–429.CrossRefGoogle Scholar
Brooks, D. R., & Hoberg, E. P. (2007). How will global climate change affect parasite-host assemblages?Trends in Parasitology 23, 571–574.CrossRefGoogle ScholarPubMed
Brooks, D. R., & McLennan, D. A. (1993). Parascript: Parasites and the Language of Evolution. Washington DC: Smithsonian Institution Press.Google Scholar
Brooks, D. R., & McLennan, D. A. (2002). The Nature of Diversity: An Evolutionary Voyage of Discovery. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Brooks, D. R., Thorson, T. B., & Mayes, M. A. (1981). Freshwater stingrays (Potamotrygonidae) and their helminth parasites: testing hypotheses of evolution and coevolution. In Funk, V. A. & Brooks, D. R. (Eds.), Advances in Cladistics (pp. 147–175). New York: New York Botanical Garden.Google Scholar
Daszak, P., Cunningham, A. A., & Hyatt, A. D. (2000). Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science, 287, 443–449.CrossRefGoogle ScholarPubMed
Davis, M. A. (2009). Invasion Biology. Oxford: Oxford University Press.Google Scholar
Dynesius, M., & Jansson, R. (2000). Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences of the USA, 97, 9115–9120.CrossRefGoogle ScholarPubMed
Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: an alternative to phyletic gradualism. In Schopf, T. J. M. (Ed.), Models in Paleobiology (pp. 82–115). San Francisco, CA: Freeman, Cooper.Google Scholar
Eldredge, N., Thompson, J. N., Brakefield, P. M., et al. (2005). The dynamics of evolutionary stasis. Paleobiology, 31, 133–145.CrossRefGoogle Scholar
Erwin, T. L. (1985). The taxon pulse: a general pattern of lineage radiation and extinction among carabid beetles. In Ball, G. E. (Ed.), Taxonomy, Phylogeny, and Biogeography of Beetles and Ants (pp. 437–472). Dordrecht: W. Junk.Google Scholar
Folinsbee, K. E., & Brooks, D. R. (2007). Early hominid biogeography: pulses of dispersal and differentiation. Journal of Biogeography, 43, 383–397.CrossRefGoogle Scholar
Galbreath, K. E., & Hoberg, E P. (2012). Return to Beringia: parasites reveal cryptic biogeographic history of North American pikas. Proceedings of the Royal Society of London B, 279, 371–378.CrossRefGoogle ScholarPubMed
Gómez-Díaz, E., Morris-Pococik, J. A., González-Solis, J., & McCoy, K. D. (2012). Trans-oceanic host dispersal explains high seabird tick diversity on Cape Verde Islands. Biology Letters. .CrossRef
Halas, D., Zamparo, D., & Brooks, D. R. (2005). A historical biogeographical protocol for studying diversification by taxon pulses. Journal of Biogeography, 32, 249–260.CrossRefGoogle Scholar
Hallam, A., & Wignall, P. B. (1997). Mass Extinctions and Their Aftermath. Oxford: Oxford University Press.Google Scholar
Hewitt, G. M. (1996). Some genetic consequences of ice ages and their role in divergence and speciation. Biological Journal of the Linnaean Society, 58, 247–276.CrossRefGoogle Scholar
Hoberg, E. P. (1995). Historical biogeography and modes of speciation across high-latitude seas of the Holarctic: concepts for host-parasite coevolution among the Phocini (Phocidae) and Tetrabothriidae (Eucestoda). Canadian Journal of Zoology, 73, 45–57.CrossRefGoogle Scholar
Hoberg, E. P. (1996). Faunal diversity among avian parasite assemblages: the interaction of history, ecology and biogeography. Bulletin of the Scandinavian Society of Parasitology, 6, 65–89.Google Scholar
Hoberg, E. P. (1997). Phylogeny and historical reconstruction: host parasite systems as keystones in biogeography and ecology. In Reaka-Kudla, M., Wilson, D. E. & Wilson, E. O. (Eds.), Biodiversity II: Understanding and Protecting Our Resources (pp. 243–261). Washington DC: Joseph Henry Press, National Academy of Sciences.Google Scholar
Hoberg, E. P. (2005). Coevolution and biogeography among Nematodirinae (Nematoda: Trichostrongylina) Lagomorpha and Artiodactyla (Mammalia): exploring determinants of history and structure for the northern fauna across the Holarctic. Journal of Parasitology, 91, 358–369.CrossRefGoogle ScholarPubMed
Hoberg, E. P. (2010). Invasive processes, mosaics and the structure of helminth parasite faunas. Revue Scientifique et Technique Office International des Épizooties, 29, 255–272.CrossRefGoogle ScholarPubMed
Hoberg, E. P., & Adams, A. M. (2000). Phylogeny, history and biodiversity: understanding faunal structure and biogeography in the marine realm. Bulletin Scandinavian Society of Parasitology, 10, 19–37.Google Scholar
Hoberg, E. P., & Brooks, D. R. (2008). A macroevolutionary mosaic: episodic host-switching, geographic colonization, and diversification in complex host-parasite systems. Journal of Biogeography, 35, 1533–1550.CrossRefGoogle Scholar
Hoberg, E. P., & Brooks, D. R. (2010). Beyond vicariance: integrating taxon pulses, ecological fitting and oscillation in historical biogeography and evolution. In Morand, S. & Krasnov, B. (Eds.), The Geography of Host-Parasite Interactions (pp. 7–20). Oxford: Oxford University Press.Google Scholar
Hoberg, E. P., & Klassen, G. J. (2002). Revealing the faunal tapestry: co-evolution and historical biogeography of hosts and parasites in marine systems. Parasitology, 124, S3–S22.CrossRefGoogle ScholarPubMed
Hoberg, E. P., Polley, L., Jenkins, E. J., & Kutz, S. J. (2008). Pathogens of domestic and free ranging ungulates: global climate change in temperate to boreal latitudes across North America. Office International des Épizooties Revue Scientifique et Technique, 27, 511–528.CrossRefGoogle ScholarPubMed
Hoberg, E. P., Galbreath, K. E., Cook, J. A., Kutz, S. J., & Polley, L. (2012). Northern host-parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. Advances in Parasitology, 79, 1–97.CrossRefGoogle ScholarPubMed
Jansson, R., & Dynesius, M. (2002). The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annual Reviews of Ecology and Systematics, 33, 741–777.CrossRefGoogle Scholar
Janzen, D. (1985). On ecological fitting. Oikos, 45, 308–310.CrossRefGoogle Scholar
Kutz, S. J., Ducrocq, J., Verocai, G., et al. (2012). Parasites in ungulates of Arctic North America and Greenland: a view of contemporary diversity, ecology and impact in a world under change. Advances in Parasitology, 79, 99–252.CrossRefGoogle Scholar
Lafferty, K. D. (2009). The ecology of climate change and infectious diseases. Ecology, 90, 888–900.CrossRefGoogle ScholarPubMed
Lafferty, K. D., Smith, K. F., Torchin, M. E., Dobson, A. P., & Kuris, A. M. (2005). The role of infectious diseases in natural communities. In Sax, D. F., Stachowicz, J. & Gaines, S. D. (Eds.), Species Invasions: Insights into Ecology, Evolution and Biogeography (pp. 111–134). Sunderland, MA: Sinauer Associates.Google Scholar
Lawler, J. J., Shafer, S. L., White, D., et al., 2009. Projected climate-induced faunal change in the Western Hemisphere. Ecology, 90, 588–597.CrossRefGoogle ScholarPubMed
Lister, A. (2004). The impact of Quaternary ice ages on mammalian evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 221–241.CrossRefGoogle ScholarPubMed
Marcogliese, D. J. (2005). Parasites of the superorganism: are they indicators of ecosystem health. International Journal for Parasitology, 35, 705–716.CrossRefGoogle ScholarPubMed
Marshall, L. G., Webb, S. D., Sepkoski, J. J., & Raup, D. M. (1982). Mammalian evolution and the Great American Interchange. Science, 215, 1351–1357.CrossRefGoogle ScholarPubMed
Miura, O., Torchin, M. E., Kuris, A. M., Hechinger, R. F., & Chiba, S. (2006). Introduced cryptic species of parasites exhibit different invasion pathways. Proceedings of the National Academy of Sciences of the USA, 103, 19818–19823.CrossRefGoogle ScholarPubMed
Nelson, G., & Platnick, N. I. (Eds.) (1981). Systematics and Biogeography: Cladistics and Vicariance. New York: Columbia University Press.
Nieberding, C., & Olivieri, I. (2007). Parasites: proxies for host genealogy or ecology?Trends in Ecology & Evolution, 22, 156–165.CrossRefGoogle ScholarPubMed
Page, R. D. M., (Ed.). (2003). Tangled Trees: Phylogeny, Cospeciation and Coevolution. Chicago, IL: University of Chicago Press.
Palumbi, S. (2001). Humans as the world’s greatest evolutionary force. Science, 293, 1786–1790.CrossRefGoogle ScholarPubMed
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology and Systematics, 37, 637–669.CrossRefGoogle Scholar
Peterson, A. T. (2011). Ecological niche conservatism: a time-structured view of evidence. Journal of Biogeography, 28, 817–827.CrossRefGoogle Scholar
Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52, 273–288.CrossRefGoogle Scholar
Riccardi, A. (2007). Are modern biological invasions an unprecedented form of global change?Conservation Biology, 21, 239–336.Google Scholar
Rickleffs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. Ecological Letters, 7, 1–5.CrossRefGoogle Scholar
Rickleffs, R. E. (2005). Taxon cycles: insights from invasive species. In Sax, D. F., Stachowicz, J. & Gaines, S. D. (Eds.), Species Invasions: Insights into Ecology, Evolution and Biogeography (pp. 165–193). Sunderland, MA: Sinauer Associates.Google Scholar
Rode, A. L., & Lieberman, B. S. (2005). Integrating evolution and biogeography: a case study involving Devonian crustaceans. Journal of Paleontology, 79, 267–276.2.0.CO;2>CrossRefGoogle Scholar
Sandel, B., Arge, L., Dalsgaard, B., et al. (2011). The influence of Late Quaternary climate-change velocity on species endemism. Science, 334, 660–664.CrossRefGoogle ScholarPubMed
Shafer, A. B. A., Cullingham, C. I., Côté, S. D., & Coltman, D. W. (2010). Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Molecular Ecology, 19, 4589–4621.CrossRefGoogle ScholarPubMed
Sher, A. (1999). Traffic lights at the Beringian crossroads. Nature, 397, 103–104.CrossRefGoogle Scholar
Stigall, A. L. (2010). Invasive species and biodiversity crises: testing the link in the late Devonian. PLoS One, 5 (12): e15584. .CrossRefGoogle ScholarPubMed
Stigall, A. L. (2012a). Using ecological niche modeling to evaluate niche stability in deep time. Journal of Biogeography, 39, 772–781.CrossRefGoogle Scholar
Stigall, A. L. (2012b). Invasive species and evolution. Evolutionary Education Outreach. .
Stone, G. N., Lohse, K., Nicholls, J. A., et al. (2012). Reconstructing community assembly in time and space reveals enemy escape in a western Palearctic insect community. Current Biology, 22, 532–537.CrossRefGoogle Scholar
Thompson, J. N. (2005). The Geographic Mosaic of Coevolution. Chicago, IL: University of Chicago Press.Google Scholar
Thuiller, W. (2007). Biodiversity: climate and the ecologist. Nature, 448, 550–552.CrossRefGoogle ScholarPubMed
Torchin, M. E., Lafferty, K. D., Dobson, A. P., Mackenzie, V. J., & Kuris, A. N. (2003). Introduced species and their missing parasites. Nature, 412, 628–629.CrossRefGoogle Scholar
Vrba, E. S. (1996). On the connections between paleoclimate and evolution. In Vrba, E. S., Denton, G. H., Partridge, T. C. & Burkle, L. H. (Eds.), Paleoclimate and Evolution with Emphasis on Human Origins (pp. 24–48). New Haven: Yale University Press.Google Scholar
Waltari, E., Hoberg, E. P., Lessa, E. P., & Cook, J. A. (2007). Eastward Ho: phylogeographic perspectives on colonization of hosts and parasites across the Beringian nexus. Journal of Biogeography, 34, 561–574.CrossRefGoogle Scholar
Webb, S. D. (1995). Biological implications of the Middle Miocene Amazon seaway. Science, 269, 361–362.CrossRefGoogle ScholarPubMed
Webb, S. D., & Marshall, L. G. (1981). Historical biogeography of recent South American land mammals. Pymatuning Symposia in Ecology, 6, 39–52.Google Scholar
Wiley, E. O. (1981). Phylogenetics: The Theory and Practice of Phylogenetic Systematics. New York: John Wiley.Google Scholar
Vermeij, G. (1991a). When biotas meet: understanding biotic interchange. Science, 253, 1099–1104.CrossRefGoogle ScholarPubMed
Vermeij, G. J. (1991b) Anatomy of an invasion: the trans-Arctic interchange. Paleobiology, 17, 281–307.CrossRefGoogle Scholar
Vermeij, G. J. (2005). Invasion as expectation: a historical fact of life. In Sax, D. F., Stachowicz, J. & Gaines, S. D. (Eds.), Species Invasions: Insights into Ecology, Evolution and Biogeography (pp. 315–339). Sunderland, MA: Sinauer Associates.Google Scholar
Zarlenga, D. S., Rosenthal, B. M., La Rosa, G., Pozio, E., & Hoberg, E. P. (2006). Post Miocene expansion, colonization, and host switching drove speciation among extant nematodes of the archaic genus Trichinella. Proceedings of the National Academy of Sciences of the USA, 103, 7354–7359.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×