from II - Deterministic approximations
Published online by Cambridge University Press: 07 September 2011
Introduction
Markov processes are probabilistic models for describing data with a sequential structure. Probably the most common example is a dynamical system, of which the state evolves over time. For modelling purposes it is often convenient to assume that the system states are not directly observed: each observation is a possibly incomplete, non-linear and noisy measurement (or transformation) of the underlying hidden state. In general, observations of the system occur only at discrete times, while the underlying system is inherently continuous in time. Continuous-time Markov processes arise in a variety of scientific areas such as physics, environmental modelling, finance, engineering and systems biology.
The continuous-time evolution of the system imposes strong constraints on the model dynamics. For example, the individual trajectories of a diffusion process are rough, but the mean trajectory is a smooth function of time. Unfortunately, this information is often under- or unexploited when devising practical systems. The main reason is that inferring the state trajectories and the model parameters is a difficult problem as trajectories are infinite-dimensional objects. Hence, a practical approach usually requires some sort of approximation. For example, Markov chain Monte Carlo (MCMC) methods usually discretise time [41, 16, 34, 2, 20], while particle filters approximate continuous densities by a finite number of point masses [13, 14, 15]. More recently, approaches using perfect simulation have been proposed [7, 8, 18]. The main advantage of these MCMC techniques is that they do not require approximations of the transition density using time discretisations.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.