Skip to main content Accessibility help
  • Print publication year: 2016
  • Online publication date: May 2016

2 - Prospects for the development of animal models of bipolar disorder

Related content

Powered by UNSILO
Alonso, S.J., Damas, C., Navarro, E., et al. Behavioral despair in mice after prenatal stress. J Physiol Biochem. 2000;56:7782.
Arban, R., Maraia, G., Brackenborough, K., et al. Evaluation of the effects of lamotrigine, valproate and carbamazepine in a rodent model of mania. Behav Brain Res. 2005;158:123–32.
Barr, A.M., Zis, A.P., Phillips, A.G., et al. Repeated electroconvulsive shock attenuates the depressive-like effects of D-amphetamine withdrawal on brain reward function in rats. Psychopharmacology. 2002;159: 196202.
Belmaker, R.H. Bipolar disorder. N Engl J Med. 2004;351:476–86.
Benedetti, F., Fresi, F., Maccioni, P., et al. Behavioural sensitization to repeated sleep deprivation in a mice model of mania. Behav Brain Res. 2008;187:221–7.
Berk, M., Dodd, S., Kauer-Sant-Anna, M., et al. Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand. 2007;116(Suppl. 434):41–9.
Blier, P., Ward, N.M. Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry. 2003;53:193203.
Braff, D.L., Geyer, M.A., Swerdlow, N.R. Human studies of pre-pulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacol. 2001;156:234–58.
Cade, J.F. Lithium salts in the treatment of psychotic excitement. Med J Aust. 1949;2:249352.
Cagniard, B., Balsam, P.D., Brunner, D., et al. Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacol. 2006;31:1362–70.
Cairncross, K.D., Cox, B., Forster, C., et al. A new model for the detection of antidepressant drugs: Olfactory bulbectomy in the rat compared with existing models. J Pharmacol Methods 1978;1: 131–43.
Cappeliez, P., Moore, E. Effects of lithium on an amphetamine animal model of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 1990;14: 347–58.
Cases, O., Seif, I., Grimsby, J., et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAO-A. Science. 1995;268:1763–6.
Cilia, J., Gartlon, J.E., Shilliam, C., et al. Further neurochemical and behavioural investigation of Brattleboro rats as a putative model of schizophrenia. J Psychopharmacol. 2010;24:407–19.
Conti, A.C., Cryan, J.F., Dalvi, A., et al. c-AMP response element-binding protein is essential for the up-regulation of brain-derived neurotrophic factor transcription, but not the behavioural or endocrine responses to antidepressant drugs. J Neurosci. 2002;22:3262–8.
Craddock, N., Sklar, P. Genetics of bipolar disorder. Lancet 2013;381:1654–62.
Cryan, J.F., McGrath, C., Leonard, B.E., et al. Combining pindolol and paroxetine in an animal model of chronic antidepressant action – Can early onset of action be detected? Eur J Pharmacol. 1998;352:23–8.
Cryan, J.F., Dalvi, A., Jin, S.H., et al. Use of dopamine- β-hydroxylase deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugs. J Pharmacol Exp Ther. 2001;298:651–7.
Cryan, J.F., Markou, A., Lucki, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci. 2002;23: 238–45.
Cryan, J.F., Mombereau, C., Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci Bio-behav Rev. 2005;29: 571625.
Davies, J.A., Jackson, B., Redfern, P.H. The effect of amantadine, L-dopa, (plus)-amphetamine and apomorphine on the acquisition of the conditioned avoidance response. Neuropharmacol. 1974;13:199204.
de Montigny, C., Aghajanian, G.K. Tricyclic antidepressants: Long term treatment increases responsivity of rat forebrain neurons to serotonin. Science. 1978;202:1303–6.
Dencker, D., Husum, H. Antimanic efficacy of retigabine in a proposed mouse model of bipolar disorder. Behav Brain Res. 2010;207:7883.
Dencker, D., Dias, R., Pedersen, M.L., et al. Effect of the new antiepileptic drug retigabine in a rodent model of mania. Epilepsy Behav. 2008;12: 4953.
Dugovic, C., Maccari, S., Weibel, L., et al. High corticosterone levels in prenatally stressed rats predict persistent paradoxical sleep alterations. J Neurosci. 1999;19:8656–64.
Duman, R.S., Malberg, J., Thome, J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry. 1999;46: 1181–91.
Einat, H. Establishment of a battery of simple models for facets of bipolar disorder: A practical approach to achieve increased validity, better screening and possible insights into endophenotypes of disease. Behav Genet. 2007a;37:244–55.
Einat, H. Different behaviours and different strains: potential new ways to model bipolar disorder. Neurosci Biobehav Rev. 2007b;31:850–7.
el-Mallakh, R.S., Harrison, L.T., Li, R., et al. An animal model for mania: preliminary results. Prog Neuropsychopharmacol Biol Psychiatry. 1995;19:955–62.
El Yacoubi, M., Bouali, S., Popa, D., et al. Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proc Natl Acad Sci USA. 2003; 100:6227–32.
Feifel, D., Melendez, G., Shilling, P.D. Reversal of sensorimotor gating deficits in Brattleboro rats by acute administration of clozapine and a neurotensin agonist, but not haloperidol: a potential predictive model for novel antipsychotic effects. Neuropsychopharmacol. 2004;29:731–8.
Flaisher-Grinberg, S., Overgaard, S., Einat, H. Attenuation of high sweet solution preference by mood stabilizers: A possible mouse model for the increased reward-seeking domain of mania. J Neurosci Methods. 2009;177:4450.
Forbes, N., Stewart, C., Matthews, K., et al. Chronic mild stress and sucrose consumption: Validity as a model of depression. Physiol Behav. 1996;60: 1481–4.
Fratta, W., Collu, M., Martellotta, M.C., et al. Stress-induced insomnia: Opioid-dopamine interactions. Eur J Pharmacol. 1987;142:437–40.
Frey, B.N., Valvassori, S.S., Reus, G.Z., et al. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci. 2006; 31:326–32.
Gardner, R., Jr. Mechanisms in manic-depressive disorder: an evolutionary model. Arch Gen Psychiatry. 1982;39:1436–41.
Geddes, J.R., Miklowitz, D.J. Treatment of bipolar disorder. Lancet. 2013;381: 1672–82.
Gessa, G.L., Pani, L., Fadda, P., et al. Sleep deprivation in the rat: an animal model of mania. Eur Neuropsychopharmacol. 1995;5(Suppl.):8993.
Geyer, M.A. Developing translational animal models for symptoms of schizophrenia or bipolar mania. Neurotox Res. 2008;14:71–8.
Goldberg, J.F., Burdick, K.E. Levetiracetam for acute mania. Am J Psychiatry. 2002;159:148.
Goodwin, F.K., Jamison, K.R. Manic-Depressive Illness: Bipolar Disorders and Recurrent Depression (2nd edn). New York: Oxford University Press; 2007.
Gould, T.D., Gottesman, I.I. Psychiatric endophenotypes and the development of valid animal models. Genes, Brain Behav. 2006;5: 113–19.
Gould, T.D., Einat, H. Animal models of bipolar disorder and mood stabilizer efficacy: A critical need for improvement. Neurosci Biobehav Rev. 2007;31:825–31.
Gould, T.J., Keith, R.A., Bhat, R.V. Differential sensitivity to lithium’s reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behav Brain Res. 2001;118:95105.
Gould, T.D., Chen, G., Manji, H.K. In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3. Neuropsychopharmacol. 2004;29:32–8.
Grimsby, J., Toth, M., Chen, K., et al. Increased stress response and β-phenylethylamine in MAO-B-deficient mice. Nat Genet. 1997;17: 206–10.
Harris, R., Zhou, J., Youngblood, B., et al. Failure to change exploration or saccharin preference in rats exposed to chronic mild stress. Physiol Behav. 1997;63:91100.
Harrison, A.A., Liem, Y.T.B., Markou, A., et al. Fluoxetine combined with a serotonin-1A receptor antagonist reversed reward deficits observed during nicotine and amphetamine withdrawal in rats. Neuropsychopharmacology. 2001;25:5571.
Harrison-Read, P.E. Models of mania and antimanic drug actions: Progressing the endophenotype approach. J Psychopharmacol. 2009;23:334–7.
Hasler, G., Drevets, W.C., Gould, T.D., et al. Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry. 2006;60: 93105.
Heisler, L.K., Chu, H.M., Brennan, T.J., et al. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci USA. 1998;95:15049–54.
Hicks, R.A., Moore, J.D., Hayes, C., et al. REM sleep deprivation increases aggressiveness in male rats. Physiol Behav. 1979;22:1097–100.
Judd, L.L., Akiskal, H.S., Schettler, P.J., et al. The long-term natural history of the weekly symptomatic status of bipolar I disorder. Arch Gen Psychiatry. 2002;59:530–7.
Kalueff, A.V., Wheaton, M., Murphy, D.L. What’s wrong with my mouse model? Advances and strategies in animal modelling of anxiety and depression. Behav Brain Res. 2007;179: 118.
Kato, T., Kubota, M., Kasahara, T. Animal models of bipolar disorder. Neurosci Biobehav Rev. 2007;31:832–42.
Keck, P.E., McElroy, S.L., Strakowski, S.M . Anticonvulsants and antipsychotics in the treatment of bipolar disorder. J Clin Psychiatry. 1998;59(Suppl. 6):7481.
Kelly, M.P., Logue, S.F., Dwyer, J.M., et al. The supra-additive hyperactivity caused by an amphetamine-chlordiazepoxide mixture exhibits an inverted-U dose–response: Negative implications for the use of a model in screening for mood stabilizers. Pharmacol Biochem Behav. 2009;92:649–54.
Kim, S.H., Yu, H.S., Park, H.G., et al. Dose-dependent effect of intra-cerebroventricular injection of ouabain on the phosphorylation of the MEK1/2-ERK1/2-p90RSK pathway in the rat brain related to locomotor activity. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32: 1637–42.
Knapp, D.J., Sim-Selley, L.J., Breese, G.R., et al. Selective breeding of 5-HT(1A) receptor-mediated responses: application to emotion and receptor action. Pharmacol Biochem Behav. 2000;67:701–8.
Kokkinidis, L., Zacharko, R.M., Predy, P.A., et al. Post-amphetamine depression of self-stimulation responding from the substantia nigra: reversal by tricyclic antidepressants. Pharmacol Biochem Behav. 1980;13: 379–83.
Koszewska, I., Rybakowski, J.K. Antidepressant-induced mood conversions in bipolar disorder: a retrospective study of tricyclic versus non-tricyclic antidepressant drugs. Neuropsychobiology. 2009;59:1216.
Kromer, S.A., Kessler, M.S., Milfay, D., et al. Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety. J Neurosci. 2005;25:4375–84.
Lachman, H.M., Papolos, D.F., Weiner, E.D., et al. Hippocampal neuropeptide Y mRNA is reduced in a strain of learned helpless resistant rats. Brain Res Mol Brain Res. 1992;14:94100.
Lamberty, Y., Margineanu, D.G., Klitgaard, H. Effect of the new antiepileptic drug levetiracetam in an animal model of mania. Epilepsy Behav. 2001;2:454–9.
Lemonde, S., Turecki, G., Bakish, D., et al. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci. 2003;23:8788–99.
Le-Niculescu, H., McFarland, M.J., Ogden, C.A., et al. Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:134–66.
Lucki, I. The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol. 1997;8: 523–32.
Maier, S.F., Seligman, M.E.P. Learned helplessness: Theory and evidence. J Exp Psychol. 1976;1:346.
Malatynska, E., Knapp, R.J. Dominant-submissive behavior as models of mania and depression. Neurosci Biobehav Rev. 2005;29: 715–37.
Malatynska, E., Pinhasov, A., Crooke, J.J., et al. Reduction of dominant or submissive behaviours as models for antimanic or antidepressant drug testing: Technical considerations. J Neurosci Methods. 2007;165:175–82.
Malkesman, O., Austin, D.R., Chen, G., et al. Reverse translational strategies for developing animal models of bipolar disorder. Dis Models Mechanisms. 2009;2: 238–45.
Mayorga, A.J., Lucki, I. Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacol. 2001;155:110–12.
Mayorga, A.J., Dalvi, A., Page, M.E., et al. Antidepressant-like behavioral effects in 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B) receptor mutant mice. J Pharmacol Exp Ther. 2001;298:1101–7.
McClung, C.A., Sidiropoulou, K., Vitaterna, M., et al. Regulation of dopaminergic transmission and cocaine reward by the clock gene. Proc Natl Acad Sci U S A. 2005;102:9377–81.
Meyendorff, E., Lerer, B., Moore, N.C., et al. Methylphenidate infusion in euthymic bipolars: effect of carbamazepine pretreatment. Psychiatry Res. 1985;16:303–8.
Miczek, K.A., Maxson, S.C., Fish, E.W., et al. Aggressive behavioural phenotypes in mice. Behav Brain Res. 2001;125:167–81.
Minassian, A., Henry, B.L., Geyer, M.A., et al. The quantitative assessment of motor activity in mania and schizophrenia. J Affect Disord. 2009;120: 200–6.
Mitchell, P.J. Antidepressant treatment and rodent aggressive behaviour. Eur J Pharmacol. 2005;526:147–62.
Mitchell, P.J., Redfern, P.H. Potentiation of the time-dependent, antidepressant-induced changes in the agonistic behaviour of resident rats by the 5-HT1A receptor antagonist, WAY-100635. Behav Pharmacol. 1997;8:585606.
Montkowski, A., Barden, N., Wotjak, C., et al. Long-term antidepressant treatment reduces behavioural deficits in transgenic mice with impaired glucocorticoid receptor function. J Neuroendocrinol. 1995;7: 841–5.
Nelson, E.E., Winslow, J.T. Non-human primates: model animals for developmental psychopathology. Neuropsychopharm Rev. 2009;34: 90105.
Neumaier, J.F., Edwards, E., Plotsky, P.M. 5-HT(1B) mRNAregulation in two animal models of altered stress reactivity. Biol Psychiatry. 2002;51:902–8.
Norman, T.R., Cranston, I., Irons, J.A., et al. Agomelatine suppresses locomotor hyperactivity in olfactory bulbectomised rats: A comparison to melatonin and to the 5-HT2C antagonist, S32006. Eur J Pharmacol. 2012;674: 2732.
O’Donnell, J.M., Marek, G.J., Seiden, L.S. Antidepressant effects assessed using behaviour maintained under a differential-reinforcement-of-low rate (DRL) operant schedule. Neurosci Biobehav Rev. 2005;29:785–98.
O’Donnell, K.C., Gould, T.D. The behavioural actions of lithium in rodent models: leads to develop novel therapeutics. Neurosci Biobehav Rev. 2007;31:932–62.
Overstreet, D.H. Behavioural characteristics of rat lines selected for differential hypothermic responses to cholinergic or serotonergic agonists. Behav Genet. 2002;32: 335–48.
Overstreet, D.H., Russell, R.W., Helps, S.C., et al. Selective breeding for sensitivity to the anticholinesterase, DFP. Psychopharmacol. 1979;65:1520.
Overstreet, D.H., Pucilowski, O., Rezvani, A.H., et al. Administration of antidepressants, diazepam and psychomotor stimulants further confirms the utility of Flinders Sensitive Line rats as an animal model of depression. Psychopharmacol. 1995;121:2737.
Overstreet, D.H., Rezvani, A.H., Knapp, D.J., et al. Further selection of rat lines differing in 5-HT-1A receptor sensitivity: behavioral and functional correlates. Psychiatr Genet. 1996;6:107–17.
Parks, C.L., Robinson, P.S., Sibille, E., et al. Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA. 1998;95:10734–9.
Peet, M., Peters, S. Drug-induced mania. Drug Saf. 1995;12:146–53.
Perry, W., Minassian, A., Feifel, D., et al. Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. Biol Psychiatry. 2001;50: 418–24.
Perry, W., Minassian, A., Paulus, M.P., et al. A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry. 2009;66:1072–80.
Perry, W., Minassian, A., Henry, B., et al. Quantifying over-activity in bipolar and schizophrenia patients in a human open field paradigm. Psychiatry Res. 2010;178:8491.
Poitou, P., Boulu, R., Bohuon, C. Effect of lithium and other drugs on the amphetamine chlordiazepoxide hyperactivity in mice. Experientia. 1975;31:99101.
Popa, D., El Yacoubi, M., Vaugeois, J.M., et al. Homeostatic regulation of sleep in a genetic model of depression in the mouse: effects of muscarinic and 5-HT1A receptor activation. Neuropsychopharmacol. 2006;31: 1637–46.
Porsolt, R.D., Le Pichon, M., Jalfre, M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266:730–2.
Porsolt, R.D., Anton, G., Blavet, N., et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol. 1978;47: 379–91.
Prickaerts, J., Moechars, D., Cryns, K., et al. Transgenic mice overexpressing glycogen synthase kinase 3-beta: a putative model of hyperactivity and mania. J Neurosci. 2006;26:9022–9.
Pucilowski, O., Overstreet, D.H., Rezvani, A.H., et al. Chronic mild stress-induced anhedonia: greater effect in a genetic rat model of depression. Physiol Behav. 1993;54:1215–20.
Ralph-Williams, R.J., Paulus, M.P., Zhuang, X., et al. Valproate attenuates hyperactive and perseverative behaviours in mutant mice with a dysregulated dopamine system. Biol Psychiatry. 2003;53:352–9.
Ramboz, S., Oosting, R., Amara, D.A., et al. Serotonin receptor 1A knockout: An animal model of anxiety-related disorder Proc Natl Acad Sci USA. 1998;95;14476–81.
Redrobe, J.P., Nielsen, A.N. Effects of neuronal Kv7 potassium channel activators on hyperactivity in a rodent model of mania. Behav Brain Res. 2009;198:481–5.
Roybal, K., Theobold, D., Graham, A., et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A. 2007;104:6406–11.
Rupniak, N.M., Carlson, E.J., Webb, J.K., et al. Comparison of the phenotype of NK1R–/– mice with pharmacological blockade of the substance P (NK1) receptor in assays for antidepressant and anxiolytic drugs. Behav Pharmacol. 2001;12:497508.
Sachs, G.S., Gardner-Schuster, E.E. Adjunctive treatment of acute mania: A clinical overview. Acta Psychiatr Scand Suppl. 2007;434:2734.
Sanchis-Segura, C., Spanagel, R., Henn, F.A., et al. Reduced sensitivity to sucrose in rats bred for helplessness: a study using the matching law. Behav Pharmacol. 2005;16:267–70.
Scott-McKean, J.J., Wenger, G.R., Tecott, L.H., et al. 5-HT1A Receptor null mutant mice responding under a differential – reinforcement-of-low-rate 72-second schedule of reinforcement. Open Neuropsychopharmacol J. 2008;1:2432.
Seay, B., Harlow, H.F. Maternal separation in the rhesus monkey. J Nerv Ment Dis. 1965;140:434–41.
Shaldubina, A., Einat, H., Szechtman, H., et al. Preliminary evaluation of oral anticonvulsant treatment in the quinpirole model of bipolar disorder. J Neural Transm. 2002;109:433–40.
Shaltiel, G., Maeng, S., Malkesman, O., et al. Evidence for the involvement of the kainite receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry. 2008;13:858–72.
Sherman, A.D., Sacquitne, J.L., Petty, F. Specificity of the learned helplessness model of depression. Pharmacol Biochem Behav. 1982;16:449–54.
Shink, E., Morissette, J., Sherrington, R., et al. A genome-wide scan points to a susceptibility locus for bipolar disorder on chromosome 12. Mol Psychiatry. 2005;10:545–52.
Song, C., Leonard, B.E. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev. 2005;29: 627–47.
Vassout, A., Veenstra, S., Hauser, K., et al. NKP608: a selective NK-1 receptor antagonist with anxiolytic-like effects in the social interaction and social exploration test in rats. Regul Pept. 2000;96:716.
Vaugeois, J.M., Passera, G., Zuccaro, F., et al. Individual differences in response to imipramine in the mouse tail suspension test. Psychopharmacol. 1997;134:387–91.
Vinkers, C.H., Joëls, M., Milaneschi, Y., et al. Exposure across the life span cumulatively increases depression risk and is moderated by neuroticism. Depress Anxiety. 2014;31 (9):737–45.
Weiss, J.M., Kilts, C.D. Animal models of depression and schizophrenia. In: Nemeroff, CB, Schatzberg, AF (eds). Textbook of Psychopharmacology (2nd edn). Arlington, VA: American Psychiatric Press; 1998: pp. 88123.
Weiss, J.M., Cierpial, M.A., West, C.H. Selective breeding of rats for high and low motor activity in a swim test: toward a new animal model of depression. Pharmacol Biochem Behav. 1998;1: 4966.
Willner, P. The validity of animal models of depression. Psychopharmacol. 1984;83:116.
Willner, P. Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacol. 1997;134:319–29.
Willner, P., Muscat, R., Papp, M. Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neurosci Biobehav Rev. 1992;16:525–34.
Xu, F., Gainetdinov, R.R., Wetsel, W.C., et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci. 2000;3:465–71.
Yamada, K., Iida, R., Miyamoto, Y., et al. Neurobehavioral alterations in mice with a targeted deletion of the tumor necrosis factor-α gene: implications for emotional behavior. J Neuroimmunol. 2000;111:131–8.
Yoshikawa, T., Watanabe, A., Ishitsuka, Y., et al. Identification of multiple genetic loci linked to the propensity for ‘‘behavioral despair’’ in mice. Genome Res. 2002;12:357–66.
Young, J.W., Minassian, A., Paulus, M.P., et al. A reverse-translational approach to bipolar disorder: rodent and human studies in the Behavioral Pattern Monitor. Neurosci Biobehav Rev. 2007;31: 882–96.
Young, J.W., Henry, B.L., Geyer, M.A. Predictive animal models of mania: Hits, misses and future directions. Br J Pharmacol. 2011;164:1263–84.
Zhang, D., Cheng, L., Qian, Y., et al. Singleton deletions throughout the genome increase risk of bipolar disorder. Mol Psychiatry. 2009;14:376–80.