Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-14T04:44:34.632Z Has data issue: false hasContentIssue false

20 - Multilingualism and Cognitive Control in the Brain

from Part V - L3/Ln and Cognition

Published online by Cambridge University Press:  13 July 2023

Jennifer Cabrelli
Affiliation:
University of Illinois, Chicago
Adel Chaouch-Orozco
Affiliation:
The Hong Kong Polytechnic University
Jorge González Alonso
Affiliation:
Universidad Nebrija, Spain and UiT, Arctic University of Norway
Sergio Miguel Pereira Soares
Affiliation:
Max Planck Institute for Psycholinguistics
Eloi Puig-Mayenco
Affiliation:
King's College London
Jason Rothman
Affiliation:
UiT, Arctic University of Norway and Universidad Nebrija, Spain
Get access

Summary

Multilingualism affects cognitive, behavioral, and neural function across the lifespan. Here, we review the neuroimaging literature on bilingualism, multilingualism, and executive functions, focusing on three multilingual groups who rely on language control to varying degrees to overcome competition from other languages: third-language learners, multilingual adults, and simultaneous interpreters. In third-language learners, changes in brain regions underlying executive functions occur during the early stages of acquiring another language. In multilingual adults, effects of language experience reflect a qualitative difference between monolingual and multilingual processing rather than cumulative effects of increased linguistic knowledge. In simultaneous interpreters, changes in gray matter volume and white matter integrity are found in areas underlying language selection and executive functions, reflecting neural efficiency due to experience with rapid translation. The implications of these findings for our understanding of multilingualism and the value of moving beyond the monolingual–bilingual dichotomy are discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abutalebi, J., & Green, D. W. (2008). Control Mechanisms in Bilingual Language Production: Neural Evidence from Language Switching Studies. Language and Cognitive Processes, 23(4), 557582.CrossRefGoogle Scholar
Abutalebi, J., Della Rosa, P. A., Green, D. W., et al. (2012). Bilingualism Tunes the Anterior Cingulate Cortex for Conflict Monitoring. Cerebral Cortex, 22(9), 20762086.CrossRefGoogle ScholarPubMed
Abutalebi, J., Della Rosa, P. A., Castro Gonzaga, A. K., et al. (2013a). The Role of the Left Putamen in Multilingual Language Production. Brain and Language, 125(3), 307315.Google Scholar
Abutalebi, J., Della Rosa, P. A., Ding, G., et al. (2013b). Language Proficiency Modulates the Engagement of Cognitive Control Areas in Multilinguals. Cortex, 49(3), 905911.CrossRefGoogle ScholarPubMed
Abutalebi, J., Guidi, L., Borsa, V., et al. (2015). Bilingualism Provides a Neural Reserve for Aging Populations. Neuropsychologia, 69, 201210.Google Scholar
Almairac, F., Herbet, G., Moritz-Gasser, S., et al. (2015). The Left Inferior Fronto-Occipital Fasciculus Subserves Language Semantics: A Multilevel Lesion Study. Brain Structure and Function, 220(4), 19831995.CrossRefGoogle ScholarPubMed
Anderson, J. A. E., Chung-Fat-Yim, A., Bellana, B., Luk, G., & Bialystok, E. (2018a). Language and Cognitive Control Networks in Bilinguals and Monolinguals. Neuropsychologia, 117, 352363.Google Scholar
Anderson, J., Grundy, J. G., De Frutos, J. et al. (2018b). Effects of Bilingualism on White Matter Integrity in Older Adults. NeuroImage, 167, 143150.CrossRefGoogle ScholarPubMed
Anderson, J. A. E., Mak, L., Keyvani Chahi, A., & Bialystok, E. (2018c). The Language and Social Background Questionnaire: Assessing Degree of Bilingualism in a Diverse Population. Behavior Research Methods, 50(1), 250263.Google Scholar
Anderson, J. A. E., Hawrylewicz, K., & Bialystok, E. (2020). Who Is Bilingual? Snapshots across the Lifespan. Bilingualism: Language and Cognition, 23(5), 929937.Google Scholar
Babcock, L., & Vallesi, A. (2017). Are Simultaneous Interpreters Expert Bilinguals, Unique Bilinguals, or Both? Bilingualism: Language and Cognition, 20(2), 403417.Google Scholar
Badre, D. (2008). Cognitive Control, Hierarchy, and the Rostro-Caudal Organization of the Frontal Lobes. Trends in Cognitive Sciences, 12(5), 193200.Google Scholar
Barac, R., Moreno, S., & Bialystok, E. (2016). Behavioral and Electrophysiological Differences in Executive Control between Monolingual and Bilingual Children. Child Development, 87(4), 12771290.CrossRefGoogle ScholarPubMed
Bartha-Doering, L., Kollndorfer, K., Schwartz, E., et al. (2020). The Role of the Corpus Callosum in Language Network Connectivity in Children. Developmental Science, 24(2), E13031.Google Scholar
Bartholow, B. D., Pearson, M.A., Dickter, C. L., et al. (2005). Strategic Control and Medial Frontal Negativity: Beyond Errors and Response Conflict. Psychophysiology, 42, 3342.Google Scholar
Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR Diffusion Tensor Spectroscopy and Imaging. Biophysical Journal, 66(1), 259267.CrossRefGoogle ScholarPubMed
Baum, S., & Titone, D. (2014). Moving toward a Neuroplasticity View of Bilingualism, Executive Control, and Aging. Applied Psycholinguistics, 35(5), 857894.CrossRefGoogle Scholar
Becker, M., Schubert, T., Strobach, T., Gallinat, J., & Kühn, S. (2016). Simultaneous Interpreters vs. Professional Multilingual Controls: Group Differences in Cognitive Control as well as Brain Structure and Function. NeuroImage, 134, 250260.Google Scholar
Berkes, M., Calvo, N., Anderson, J. A. E., & Bialystok, E. (2021). Poorer Clinical Outcomes for Older Adult Monolinguals When Matched to Bilinguals on Brain Health. Brain Structure and Function, 226, 415424.CrossRefGoogle ScholarPubMed
Bialystok, E. (2017). The Bilingual Adaptation: How Minds Accommodate Experience. Psychological Bulletin, 143(3), 233–62.CrossRefGoogle ScholarPubMed
Bialystok, E., Craik, F. I. M., Green, D. W., & Gollan, T. H. (2009). Bilingual Minds. Psychological Science in the Public Interest, 10(3), 89129.Google Scholar
Bialystok, E., Craik, F. I., & Luk, G. (2012). Bilingualism: Consequences for Mind and Brain. Trends in Cognitive Sciences, 16(4), 240250.Google Scholar
Bloch, C., Kaiser, A., Kuenzli, E., et al. (2009). The Age of Second Language Acquisition Determines the Variability in Activation Elicited by Narration in Three Languages in Broca’s and Wernicke’s Area. Neuropsychologia, 47(3), 625633.Google Scholar
Blumenfeld, H. K., & Marian, V. (2013). Parallel Language Activation and Cognitive Control during Spoken Word Recognition in Bilinguals. Journal of Cognitive Psychology, 25(5), 245257.Google Scholar
Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict Monitoring Versus Selection-for-Action in Anterior Cingulate Cortex. Nature, 402(6758), 179181.Google Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict Monitoring and Cognitive Control. Psychological Review, 108(3), 624652.Google Scholar
Briellmann, R. S., Saling, M. M., Connell, A. B., et al. (2004). A High-Field Functional MRI Study of Quadri-lingual Subjects. Brain and Language, 89(3), 531542.Google Scholar
Brownsett, S. L., & Wise, R. J. (2010). The Contribution of the Parietal Lobes to Speaking and Writing. Cerebral Cortex, 20(3), 517523.Google Scholar
Burgaleta, M., Sanjuán, A., Ventura-Campos, N., Sebastian-Galles, N., & Ávila, C. (2016). Bilingualism at the Core of the Brain: Structural Differences between Bilinguals and Monolinguals Revealed by Subcortical Shape Analysis. NeuroImage, 125, 437445.CrossRefGoogle ScholarPubMed
Byers-Heinlein, K., Esposito, A. G., Winsler, A., et al. (2019). The Case for Measuring and Reporting Bilingualism in Developmental Research. Collabra. Psychology, 5(1), 37.CrossRefGoogle ScholarPubMed
Cattani, A., Abbot-Smith, K., Farag, R., et al. (2014). How Much Exposure to English Is Necessary for a Bilingual Toddler to Perform Like a Monolingual Peer in Language Tests? International Journal of Language and Communication Disorders, 49(6), 649671.Google Scholar
Cenoz, J. (2013). The Influence of Bilingualism on Third Language Acquisition: Focus on Multilingualism. Language Teaching, 46(1), 7186.Google Scholar
Chertkow, H, Whitehead, V, Phillips, N, Wolfson, C, Atherton, J, & Bergman, H. (2010). Multilingualism (but Not Always Bilingualism) Delays the Onset of Alzheimer Disease: Evidence from a Bilingual Community. Alzheimer Disease and Associated Disorders, 24(2), 118125.Google Scholar
Chiang, M.-C., Barysheva, M., Shattuck, D. W., et al. (2009). Genetics of Brain Fiber Architecture and Intellectual Performance. Journal of Neuroscience, 29(7), 22122224.Google Scholar
Christoffels, I. K., De Groot, A. M. B., & Kroll, J. F. (2006). Memory and Language Skills in Simultaneous Interpreters: The Role of Expertise and Language Proficiency. Journal of Memory and Language, 54(3), 324345.CrossRefGoogle Scholar
Chung-Fat-Yim, A., Sorge, G., & Bialystok, E. (2020). Continuous Effects of Bilingualism and Attention on Flanker Task Performance. Bilingualism: Language and Cognition, 23(5), 11061111.Google Scholar
Chung-Fat-Yim, A., Poarch, G. J., Comishen, K. J., & Bialystok, E. (2021). Does Language Context Impact the Neural Correlates of Executive Control in Monolingual and Multilingual Young Adults? Brain and Language, 222, article 105011.Google Scholar
Coderre, E. L., Smith, J. F., Van Heuven, W. J., & Horwitz, B. (2016). The Functional Overlap of Executive Control and Language Processing in Bilinguals. Bilingualism: Language and Cognition, 19(3), 471488.CrossRefGoogle ScholarPubMed
Colcombe, S., & Kramer, A. F. (2003). Fitness Effects on the Cognitive Function of Older Adults: A Meta-analytic Study. Psychological Science, 14(2), 125130.Google Scholar
Crinion, J., Turner, R., Grogan, A., et al. (2006). Language Control in the Bilingual Brain. Science, 312(5779), 15371540.Google Scholar
Cummine, J., & Boliek, C. A. (2013). Understanding White Matter Integrity Stability for Bilinguals on Language Status and Reading Performance. Brain Structure and Function, 218(2), 595601.Google Scholar
Cummins, J. (1976). The Influence of Bilingualism on Cognitive Growth: A Synthesis of Research Findings and Explanatory Hypotheses. Working Papers on Bilingualism, 9, 143.Google Scholar
Cummins, J. (1979). Linguistic Interdependence and the Educational Development of Bilingual Children. Review of Educational Research, 49(2), 222251.Google Scholar
Curtis, C. E. (2006). Prefrontal and Parietal Contributions to Spatial Working Memory. Neuroscience, 139(1), 173180.Google Scholar
DeAnda, S., Bosch, L., Poulin-Dubois, D., Zesiger, P., & Friend, M. (2016). The Language Exposure Assessment Tool: Quantifying Language Exposure in Infants and Children. Journal of Speech, Language, and Hearing Research, 59(6), 13461356.Google Scholar
De Baene, W., Duyck, W., Brass, M., & Carreiras, M. (2015). Brain Circuit for Cognitive Control is Shared by Task and Language Switching. Journal of Cognitive Neuroscience, 27(9), 17521765.Google Scholar
de Bruin, A., Roelofs, A., Dijkstra, T., & FitzPatrick, I. (2014). Domain-General Inhibition Areas of the Brain Are Involved in Language Switching: fMRI Evidence from Trilingual Speakers. NeuroImage, 90, 348359.Google Scholar
DeLuca, V., Rothman, J., Bialystok, E., & Pliatsikas, C. (2019). Redefining Bilingualism as a Spectrum of Experiences that Differentially Affects Brain Structure and Function. Proceedings of the National Academy of Sciences of the United States of America, 116(15), 75657574.Google Scholar
DeLuca, V., Rothman, J., Bialystok, E., & Pliatsikas, C. (2020). Duration and Extent of Bilingual Experience Modulate Neurocognitive Outcomes. NeuroImage, 204, 116222.Google Scholar
Del Maschio, N., Sulpizio, S., Gallo, F., Fedeli, D., Weekes, B. S., & Abutalebi, J. (2018). Neuroplasticity across the Lifespan and Aging Effects in Bilinguals and Monolinguals. Brain and Cognition, 125, 118126.CrossRefGoogle ScholarPubMed
Della Rosa, P. A., Videsott, G., Borsa, V. M., Canini, M., Weekes, B. S., Franceschini, R., & Abutalebi, J. (2013). A Neural Interactive Location for Multilingual Talent. Cortex, 49(2), 605608.Google Scholar
Dick, A. S., & Tremblay, P. (2012). Beyond the Arcuate Fasciculus: Consensus and Controversy in the Connectional Anatomy of Language. Brain, 135(12), 35293550.Google Scholar
Dong, Y., & Zhong, F. (2017). Interpreting Experience Enhances Early Attentional Processing, Conflict Monitoring and Interference Suppression, along the Time Course of Processing. Neuropsychologia, 95, 193203.Google Scholar
Dunst, B., Benedek, M., Koschutnig, K., Jauk, E., & Neubauer, A. C. (2014). Sex Differences in the IQ-White Matter Microstructure Relationship: A DTI Study. Brain and Cognition, 91, 7178.Google Scholar
Elmer, S., Hänggi, J., Meyer, M., & Jäncke, L. (2011). Differential Language Expertise Related to White Matter Architecture in Regions Subserving Sensory-Motor Coupling, Articulation, and Interhemispheric Transfer. Human Brain Mapping, 32(12), 20642074.Google Scholar
Elmer, S., Hänggi, J., & Jäncke, L. (2014). Processing Demands Upon Cognitive, Linguistic, and Articulatory Functions Promote Gray Matter Plasticity in the Adult Multilingual Brain: Insights from Simultaneous Interpreters. Cortex, 54, 179189.Google Scholar
Eurostat (2017). What Proportion of Students Learn Two or More Foreign Languages? [Infographic]. https://ec.europa.eu/eurostat/statistics-explained/index.php/Foreign_language_learning_statistics.Google Scholar
Fernandez, M., Tartar, J. L., Padron, D., & Acosta, J. (2013). Neurophysiological Marker of Inhibition Distinguishes Language Groups on a Non-linguistic Executive Function Test. Brain and Cognition, 83(3), 330336.Google Scholar
Ferreira, A., Schwieter, J. W., & Festman, J. (2020). Cognitive and Neurocognitive Effects from the Unique Bilingual Experiences of Interpreters. Frontiers in Psychology, 11, 548755.Google Scholar
Gallo, F., Novitskiy, N., Myachykov, A., & Shtyrov, Y. (2020). Individual Differences in Bilingual Experience Modulate Executive Control Network and Performance: Behavioral and Structural Neuroimaging Evidence. Bilingualism: Language and Cognition, 24(2), 293304.Google Scholar
Garbin, G., Sanjuan, A., Forn, C., et al. (2010). Bridging Language and Attention: Brain Basis of the Impact of Bilingualism on Cognitive Control. NeuroImage, 53(4), 12721278.Google Scholar
Gaser, C., & Schlaug, G. (2003). Brain Structures Between Musicians and Non-musicians. Journal of Neuroscience, 23(27), 92409245.Google Scholar
Gold, B. T., Johnson, N. F., & Powell, D. K. (2013). Lifelong Bilingualism Contributes to Cognitive Reserve against White Matter Integrity Declines in Aging. Neuropsychologia, 51(13), 28412846.CrossRefGoogle ScholarPubMed
Gollan, T. H., Sandoval, T., & Salmon, D. P. (2011). Cross-Language Intrusion Errors in Aging Bilinguals Reveal the Link between Executive Control and Language Selection. Psychological Science, 22(9), 11551164.Google Scholar
Grogan, A., Green, D. W., Ali, N., Crinion, J. T., & Price, C. J. (2009). Structural Correlates of Semantic and Phonemic Fluency Ability in First and Second Languages. Cerebral Cortex, 19(11), 26902698.Google Scholar
Grundy, J. G., Anderson, J., & Bialystok, E. (2017). Neural Correlates of Cognitive Processing in Monolinguals and Bilinguals. Annals of the New York Academy of Sciences, 1396(1), 183201.Google Scholar
Gullifer, J. W., Chai, X. J., Whitford, V., et al. (2018). Bilingual Experience and Resting-State Brain Connectivity: Impacts of L2 Age of Acquisition and Social Diversity of Language Use on Control Networks. Neuropsychologia, 117, 123134.Google Scholar
Hayakawa, S., & Marian, V. (2019). Consequences of Multilingualism for Neural Architecture. Behavioral Brain Function, 15, 6.Google Scholar
Heidlmayr, K., Moutier, S., Hemforth, B., Courtin, C., Tanzmeister, R., & Isel, F. (2014). Successive Bilingualism and Executive Functions: The Effect of Second Language Use on Inhibitory Control in a Behavioural Stroop Colour Word Task. Bilingualism: Language and Cognition, 17(3), 630645.Google Scholar
Hervais-Adelman, A., & Babcock, L. (2020). The Neurobiology of Simultaneous Interpreting: Where Extreme Language Control and Cognitive Control Intersect. Bilingualism: Language and Cognition, 23, 740751.Google Scholar
Hervais-Adelman, A., Moser-Mercer, B., & Golestani, N. (2015). Brain Functional Plasticity Associated with the Emergence of Expertise in Extreme Language Control. NeuroImage, 114, 264274.Google Scholar
Hervais-Adelman, A., Moser-Mercer, B., Murray, M. M., & Golestani, N. (2017). Cortical Thickness Increases After Simultaneous Interpretation Training. Neuropsychologia, 98, 212219.Google Scholar
Hervais-Adelman, A., Egorova, N., & Golestani, N. (2018). Beyond Bilingualism: Multilingual Experience Correlates with Caudate Volume. Brain Structure and Function, 223(7), 34953502.Google Scholar
Hilchey, M. D., & Klein, R. M. (2011). Are There Bilingual Advantages on Nonlinguistic Interference Tasks? Implications for the Plasticity of Executive Control Processes. Psychonomic Bulletin and Review, 18(4), 625658.Google Scholar
Kaiser, A., Eppenberger, L. S., Smieskova, R., et al. (2015). Age of Second Language Acquisition in Multilinguals Has an Impact on Gray Matter Volume in Language-Associated Brain Areas. Frontiers in Psychology, 6, article 638.Google Scholar
Kinoshita, M., Nakajima, R., Shinohara, H., et al. (2016). Chronic Spatial Working Memory Deficit Associated with the Superior Longitudinal Fasciculus: A Study Using Voxel-Based Lesion-Symptom Mapping and Intraoperative Direct Stimulation in Right Prefrontal Glioma Surgery. Journal of Neurosurgery, 125(4), 10241032.Google Scholar
Klein, C., Metz, S. I., Elmer, S., & Jäncke, L. (2018). The Interpreter’s Brain during Rest: Hyperconnectivity in the Frontal Lobe. PLoS ONE, 13(8), E0202600.Google Scholar
Klimesch, W. (2011). Evoked Alpha and Early Access to the Knowledge System: The P1 Inhibition Timing Hypothesis. Brain Research, 1408, 5271.Google Scholar
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG Alpha Oscillations: The Inhibition-Timing Hypothesis. Brain Research Reviews, 53(1), 6388.Google Scholar
Koch, C., & Jones, A. (2016). Big Science, Team Science, and Open Science for Neuroscience. Neuroview, 92(3), 612616.Google Scholar
Kok, A. (2001). On the Utility of the P3 Amplitude as a Measure of Processing Capacity. Psychophysiology, 38(3), 557577.Google Scholar
Kramer, A. F., Bherer, L., Colcombe, S. J., Dong, W., & Greenough, W. T. (2004). Environmental Influences on Cognitive and Brain Plasticity During Aging. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 59(9), 940957.Google Scholar
Kroll, J. F., Dussias, P. E., Bogulski, C. A., & Valdes Kroff, J. R. (2012). Juggling Two Languages in One Mind: What Bilinguals Tell Us about Language Processing and Its Consequences for Cognition. In Ross, B. H. (Ed.), The Psychology of Learning and Motivation (vol. 56; pp. 229262). San Diego: Elsevier Academic Press.Google Scholar
Kuhl, P. K., Stevenson, J., Corrigan, N. M., et al. (2016). Neuroimaging of the Bilingual Brain: Structural Brain Correlates of Listening and Speaking in a Second Language. Brain and Language, 162, 19.Google Scholar
Kwon, Y. H., & Lee, S.-E. (2017). Learning Third Language Brings Changes in Executive Function: An ERP Study. Language Research, 53(3), 445471.Google Scholar
Li, P., Legault, J., & Litcofsky, K. A. (2014a). Neuroplasticity as a Function of Second Language Learning: Anatomical Changes in the Human Brain. Cortex, 58, 301324.Google Scholar
Li, P., Zhang, F., Tsai, E., & Puls, B. (2014b). Language History Questionnaire (LHQ 2.0): A New Dynamic Web-Based Research Tool. Bilingualism: Language and Cognition, 17(3), 673680.Google Scholar
Li, P., Zhang, F., Yu, A., & Zhao, X. (2020). Language History Questionnaire (LHQ3): An Enhanced Tool for Assessing Multilingual Experience. Bilingualism: Language and Cognition, 23(5), 938944.Google Scholar
Luk, G., & Bialystok, E. (2013). Bilingualism Is Not a Categorical Variable: Interaction between Language Proficiency and Usage. Journal of Cognitive Psychology (Hove, England), 25(5), 605621.CrossRefGoogle Scholar
Luk, G., Anderson, J. A., Craik, F. I., Grady, C., & Bialystok, E. (2010). Distinct Neural Correlates for Two Types of Inhibition in Bilinguals: Response Inhibition versus Interference Suppression. Brain and Cognition, 74(3), 347357.Google Scholar
Luk, G., Green, D. W., Abutalebi, J., & Grady, C. (2011a). Cognitive Control for Language Switching in Bilinguals: A Quantitative Meta-analysis of Functional Neuroimaging Studies. Language and Cognitive Processes, 27(10), 14791488.Google Scholar
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011b). Lifelong Bilingualism Maintains White Matter Integrity in Older Adults. Journal of Neuroscience, 3 1, 1680816813.Google Scholar
Madan, C. R. (2017). Advances in Studying Brain Morphology: The Benefits of Open-Access Data. Frontiers in Human Neuroscience, 11, 405.Google Scholar
Madrazo, A. R., & Bernardo, A. B. I. (2012). Are Three Languages Better Than Two? Inhibitory Control in Trilinguals and Bilinguals in the Philippines. Philippine Journal of Psychology, 45(2), 225246. http://ejournals.ph/form/cite.php?id=1200.Google Scholar
Marian, V., & Hayakawa, S. (2021). Measuring Bilingualism: The Quest for a “Bilingualism Quotient.” Applied Psycholinguistics, 42(2), 527548.Google Scholar
Marian, V., & Shook, A. (2012). The Cognitive Benefits of Being Bilingual. Cerebrum: The Dana Forum on Brain Science. www.ncbi.nlm.nih.gov/pmc/articles/PMC3583091/pdf/cer-12-13.pdf.Google Scholar
Marian, V., & Spivey, M. (2003a). Bilingual and Monolingual Processing of Competing Lexical Items. Applied Psycholinguistics, 24, 173193.Google Scholar
Marian, V., & Spivey, M. (2003b). Competing Activation in Bilingual Language Processing: Within- and Between-Language Competition. Bilingualism: Language and Cognition, 6, 97115.Google Scholar
Marian, V., Blumenfeld, H. K., & Kaushanskaya, M. (2007). The Language Experience and Proficiency Questionnaire (LEAP-Q): Assessing Language Profiles in Bilinguals and Multilinguals. Journal of Speech, Language, and Hearing Research, 50(4), 940967.Google Scholar
Mechelli, A., Crinion, J. T., Noppeney, U., et al. (2004). Structural Plasticity in the Bilingual Brain: Proficiency in a Second Language and Age at Acquisition Affect Gray-Matter Density. Nature, 431(7010), 757.Google Scholar
Mohades, S. G., Struys, E., Van Schuerbeek, P., et al. (2012). DTI Reveals Structural Differences in White Matter Tracts between Bilingual and Monolingual Children. Brain Research, 1435, 7280.Google Scholar
Mohades, S. G., Van Schuerbeek, P., Rosseel, Y., et al. (2015). White-Matter Development is Different in Bilingual and Monolingual Children: A Longitudinal DTI Study. PLoS ONE, 10(2), Article E0117968.Google Scholar
Morales, J., Yudes, C., Gómez-Ariza, C. J., & Bajo, M. T. (2015a). Bilingualism Modulates Dual Mechanisms of Cognitive Control: Evidence from ERPs. Neuropsychologia, 66, 157169.Google Scholar
Morales, J., Padilla, F., Gómez-Ariza, C. J., & Bajo, M. T. (2015b). Simultaneous Interpretation Selectively Influences Working Memory and Attentional Networks. Acta Psychologica, 155, 8291.Google Scholar
Moreno, S., Wodniecka, Z., Tays, W., Alain, C., & Bialystok, E. (2014). Inhibitory Control in Bilinguals and Musicians: Event Related Potential (ERP) Evidence for Experience-Specific Effects. PLoS ONE, 9(4), article E94169.Google Scholar
Motomura, K., Fujii, M., Maesawa, S., et al. (2014). Association of Dorsal Inferior Frontooccipital Fasciculus Fibers in the Deep Parietal Lobe with Both Reading and Writing Processes: A Brain Mapping Study. Journal of Neurosurgery, 121(1), 142148.Google Scholar
Münte, T. F., Altenmüller, E., & Jäncke, L. (2002). The Musician’s Brain as a Model of Neuroplasticity. Nature Reviews Neuroscience, 3, 473478.Google Scholar
Nakajima, R., Kinoshita, M., Shinohara, H., & Nakada, M. (2020). The Superior Longitudinal Fascicle: Reconsidering the Fronto-Parietal Neural Network Based on Anatomy and Function. Brain Imaging and Behavior, 14, 28172830.Google Scholar
Olsen, R. K., Pangelinan, M. M., Bogulski, C., et al. (2015). The Effect of Lifelong Bilingualism on Regional Grey and White Matter Volume. Brain Research, 1612, 128139.Google Scholar
Paap, K. R., & Greenberg, Z. I. (2013). There Is No Coherent Evidence for a Bilingual Advantage in Executive Processing. Cognitive Psychology, 66(2), 232258.Google Scholar
Paap, K. R., & Sawi, O. (2014). Bilingual Advantages in Executive Functioning: Problems in Convergent Validity, Discriminant Validity, and the Identification of the Theoretical Constructs. Frontiers in Psychology, 5, 962.Google Scholar
Perquin, M., Vaillant, M., Schuller, A.-M., et al. (2013). Lifelong Exposure to Multilingualism: New Evidence to Support Cognitive Reserve Hypothesis. PLoS ONE, 8(4), e62030.Google Scholar
Pierpaoli, C., & Basser, P. J. (1996). Toward a Quantitative Assessment of Diffusion Anisotropy. Magnetic Resonance in Medicine, 36(6), 893906.Google Scholar
Pliatsikas, C. (2020). Understanding Structural Plasticity in the Bilingual Brain: The Dynamic Restructuring Model. Bilingualism: Language and Cognition, 23(2), 459471.CrossRefGoogle Scholar
Pliatsikas, C., & Luk, G. (2016). Executive Control in Bilinguals: A Concise Review on FMRI Studies. Bilingualism: Language and Cognition, 19(4), 699705.Google Scholar
Pliatsikas, C., Moschopoulou, E., & Saddy, J. D. (2015). The Effects of Bilingualism on the White Matter Structure of the Brain. Proceedings of the National Academy of Sciences of the United States of America, 112(5), 13341337.Google Scholar
Poarch, G. J. (2018). Multilingual Language Control and Executive Function: A Replication Study. Frontiers in Communication, 3, 46.Google Scholar
Poarch, G. J., & Bialystok, E. (2015). Bilingualism as a Model for Multitasking. Developmental Review, 35, 113124.Google Scholar
Poarch, G. J., & Van Hell, J. G. (2012a). Cross-Language Activation in Children’s Speech Production: Evidence from Second Language Learners, Bilinguals, and Trilinguals. Journal of Experimental Child Psychology, 111(3), 419438.Google Scholar
Poarch, G. J., & Van Hell, J. G. (2012b). Executive Functions and Inhibitory Control in Multilingual Children: Evidence from Second-Language Learners, Bilinguals, and Trilinguals. Journal of Experimental Child Psychology, 113(4), 535551.Google Scholar
Poarch, G. J., & Van Hell, J. G. (2014). Cross-Language Activation in Same-Script and Different-Script Trilinguals. International Journal of Bilingualism, 18(6), 693716.Google Scholar
Polich, J. (2007). Updating P300: An Integrative Theory of P3a and P3b. Clinical Neurophysiology, 118(10), 21282148.Google Scholar
Pot, A., Keijzer, M., & De Bot, K. (2018). Intensity of Multilingual Language Use Predicts Cognitive Performance in Some Multilingual Older Adults. Brain Sciences, 8(5), article 92.Google Scholar
Rodríguez-Pujadas, A., Sanjuán, A., Ventura-Campos, N., et al. (2013). Bilinguals Use Language-Control Brain Areas More Than Monolinguals to Perform Non-linguistic Switching Tasks. PLoS ONE, 8(9), article E73028.Google Scholar
Sandoval, T. C., Gollan, T. H., Ferreira, V. S., & Salmon, D. P. (2010). What Causes the Bilingual Disadvantage in Verbal Fluency? The Dual-Task Analogy. Bilingualism: Language and Cognition, 13(2), 231252.Google Scholar
Schlegel, A. A., Rudelson, J. J., & Tse, P. U. (2012). White Matter Structure Changes as Adults Learn a Second Language. Journal of Cognitive Neuroscience, 24(8), 16641670.Google Scholar
Schroeder, S. R., & Marian, V. (2017). Cognitive Consequences of Trilingualism. International Journal of Bilingualism, 21(6), 754773.Google Scholar
Shook, A., & Marian, V. (2019). Covert Co-activation of Bilinguals’ Non-Target Language: Phonological Competition from Translations. Linguistic Approaches to Bilingualism, 9(2), 228252.Google Scholar
Signorelli, T. M., Haarmann, H. J., & Obler, L. K. (2012). Working Memory in Simultaneous Interpreters: Effects of Task and Age. International Journal of Bilingualism, 16(2), 198212.Google Scholar
Singh-Curry, V., & Husain, M. (2009). The Functional Role of the Inferior Parietal Lobe in the Dorsal and Ventral Stream Dichotomy. Neuropsychologia, 47(6), 14341448.Google Scholar
Stocco, A., Yamasaki, B., Natalenko, R., & Prat, C. S. (2014). Bilingual Brain Training: A Neurobiological Framework of How Bilingual Experience Improves Executive Function. International Journal of Bilingualism, 18(1), 6792.Google Scholar
Stodden, V., Guo, P., & Ma, Z. (2013). Toward Reproducible Computational Research: An Empirical Analysis of Data and Code Policy Adoption by Journals. PLoS ONE, 8(6), E67111.Google Scholar
Sulpizio, S., Del Maschio, N., Del Mauro, G., Fedeli, D., & Abutalebi, J. (2020). Bilingualism as a Gradient Measure Modulates Functional Connectivity of Language and Control Networks. NeuroImage, 205, 116306.Google Scholar
Sullivan, M. D., Janus, M., Moreno, S., Astheimer, L., & Bialystok, E. (2014). Early Stage Second-Language Learning Improves Executive Control: Evidence from ERP. Brain and Language, 139, 8498.Google Scholar
Thiebaut De Schotten, M., Urbanski, M., Duffau, H., et al. (2005). Direct Evidence for a Parietal-Frontal Path-Way Subserving Spatial Awareness in Humans. Science, 309(5744), 22262228.Google Scholar
Timmer, K., Grundy, J. G., & Bialystok, E. (2017). Earlier and More Distributed Neural Networks for Bilinguals Than Monolinguals During Switching. Neuropsychologia, 106, 245260.Google Scholar
Van De Putte, E., De Baene, W., Garcia-Penton, L., et al. (2018). Anatomical and Functional Changes in the Brain After Simultaneous Interpreting Training: A Longitudinal Study. Cortex, 99, 243257.Google Scholar
van Veen, V., & Carter, C. S. (2002). The Anterior Cingulate as a Conflict Monitor: fMRI and ERP Studies. Physiology and Behavior, 77(4–5), 477482.Google Scholar
Vega-Mendoza, M., West, H., Sorace, A., & Bak, T. H. (2015). The Impact of Late, Non-balanced Bilingualism on Cognitive Performance. Cognition, 137, 4046.Google Scholar
Videsott, G., Herrnberger, B., Hoenig, K., et al. (2010). Speaking in Multiple Languages: Neural Correlates of Language Proficiency in Multilingual Word Production. Brain and Language, 113(3), 103112.Google Scholar
Vingerhoets, G. (2003). Multilingualism: An fMRI Study. NeuroImage, 20(4), 21812196.Google Scholar
von Bastian, C. C., Souza, A. S., & Gade, M. (2016). No Evidence for Bilingual Cognitive Advantages: A Test of Four Hypotheses. Journal of Experimental Psychology: General, 145(2), 246258.Google Scholar
Wise, R. J., Greene, J., Büchel, C., & Scott, S. K. (1999). Brain Regions Involved in Articulation. The Lancet, 353(9158), 10571061.Google Scholar
Wolff, N., Zink, N., Stock, A.-K., & Beste, C. (2017). On the Relevance of the Alpha Frequency Oscillation’s Small-World Network Architecture for Cognitive Flexibility. Scientific Reports, 7, 13910.CrossRefGoogle Scholar
Woumans, E., Ceuleers, E., Van Der Linden, L., Szmalec, A., & Duyck, W. (2015). Verbal and Nonverbal Cognitive Control in Bilinguals and Interpreters. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(5), 15791586.Google Scholar
Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The Neural Basis of Error Detection: Conflict Monitoring and the Error-Related Negativity. Psychological Review, 111(4), 931959.Google Scholar
Yudes, C., Macizo, P., & Bajo, T. (2011). The Influence of Expertise in Simultaneous Interpreting on Non-verbal Executive Processes. Frontiers in Psychology, 2, 309.Google Scholar
Zou, L., Ding, G., Abutalebi, J., Shu, H., & Peng, D. (2012). Structural Plasticity of the Left Caudate in Bimodal Bilinguals. Cortex, 48, 11971206.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×