Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T17:30:00.046Z Has data issue: false hasContentIssue false

1 - Introduction: neurons and mathematics

Published online by Cambridge University Press:  05 August 2014

Wulfram Gerstner
Affiliation:
École Polytechnique Fédérale de Lausanne
Richard Naud
Affiliation:
University of Ottawa
Liam Paninski
Affiliation:
Columbia University, New York
Get access

Summary

The primary aim of this chapter is to introduce several elementary notions of neuroscience, in particular the concepts of action potentials, postsynaptic potentials, firing thresholds, refractoriness, and adaptation. Based on these notions a preliminary model of neuronal dynamics is built and this simple model (the leaky integrate-and-fire model) will be used as a starting point and reference for the generalized integrate-and-fire models, which are the main topic of the book, to be discussed in Parts II and III. Since the mathematics used for the simple model is essentially that of a one-dimensional linear differential equation, we take this first chapter as an opportunity to introduce some of the mathematical notation that will be used throughout the rest of the book.

Owing to the limitations of space, we cannot – and do not want to – give a comprehensive introduction to such a complex field as neurobiology. The presentation of the biological background in this chapter is therefore highly selective and focuses on those aspects needed to appreciate the biological background of the theoretical work presented in this book. For an in-depth discussion of neurobiology we refer the reader to the literature mentioned at the end of this chapter.

After the review of neuronal properties in Sections 1.1 and 1.2 we will turn, in Section 1.3, to our first mathematical neuron model. The last two sections are devoted to a discussion of the strengths and limitations of simplified models.

Type
Chapter
Information
Neuronal Dynamics
From Single Neurons to Networks and Models of Cognition
, pp. 3 - 27
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×