Published online by Cambridge University Press: 05 November 2013
Prologue
A central issue to be addressed in analyzing the behavior of bubbles in a gas–liquid flow is understanding the free-fall velocity of a spherical solid particle and the rise velocity of a spherical bubble in an infinite stationary fluid. Analytical solutions for these systems are available for very low particle Reynolds numbers (Stokes law and the Hadamard equation). A derivation of Stokes law is presented in the first part of this chapter.
Experiments show that Stokes law is valid for particle Reynolds numbers less than unity. For larger ReP, empirical correlations of the drag coefficient are used. The description of the rise velocity of bubbles is complicated by possible contamination of the interface. Measurements of the rise velocity of single bubbles are usually presented as plots of US versus the bubble size for a given system. The structure of these plots reflects changes in the shape and behavior of the bubbles. Very large bubbles take the shape of a cap. A prediction of the rise velocity of these cap bubbles, developed by Batchelor, is presented in Section 8.7.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.