Published online by Cambridge University Press: 06 July 2010
Introduction
Much of plasma physics can be adequately described by fluid equations, namely, the MHD or wave equations. However, these are derivative descriptions in which some information about the plasma has been suppressed. In situations where that information matters it is necessary to go to a deeper level of physical description.
The information that gets lost in a fluid model is that relating to the distribution of velocities of the particles within a fluid element, since the fluid variables are functions of position and time but not of velocity. Any physical properties of the plasma that depend on this microscopic detail can be discovered only by a description in six-dimensional (r, v) space. Thus, instead of starting with the density of particles, n(r, t), at position r and time t, we begin with the so-called distribution function, f (r, v, t), which is the density of particles in (r, v) space at time t. The evolution of the distribution function is described by kinetic theory.
With the additional information on particle velocities within a volume element introduced by a phase space description we now have microscopic detail that we did not have before. For that reason, kinetic and fluid theories are identified as microscopic and macroscopic, respectively.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.