Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T20:50:49.857Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  12 August 2009

Geoff Hewitt
Affiliation:
Imperial College of Science, Technology and Medicine, London
Christos Vassilicos
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Background

In 1999, a major programme on turbulence was held at the Isaac Newton Institute (INI) at Cambridge, England, which was aimed at taking an overview of the current situation on turbulent flows with particular reference to the prediction of such flows in engineering systems. Though the programme spanned the range from the very fundamental to the applied, a very important feature was the involvement and support (through the UK Royal Academy of Engineering) of key players from industry. This volume, which has evolved from the INI programme, aims to address the needs of people in industry and academia who carry out calculations on turbulent systems.

It should be recognised that the prediction of turbulent flows is now of paramount importance in the development of complex engineering systems involving flow, heat and mass transfer and chemical reactions (including combustion). Whereas, in the past, the developer had to rely on experimental studies, based usually on small scale model systems, more and more emphasis is being placed nowadays on the use of computation, often through the use of commercial computational fluid dynamics (CFD) codes. Superficially, the use of such computational methods seems ideal; they allow painless extension to large scale and can often give information on fine details of the flow that are not economically accessible to experimental measurement. Furthermore, the results can be presented in an easily accessible and attractive form using the sophisticated computer graphics now generally available.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×