Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T06:07:53.781Z Has data issue: false hasContentIssue false

3 - RANS modelling of turbulent flows affected by buoyancy or stratification

Published online by Cambridge University Press:  12 August 2009

B. E. Launder
Affiliation:
University of Manchester
Geoff Hewitt
Affiliation:
Imperial College of Science, Technology and Medicine, London
Christos Vassilicos
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Introduction

The aim of this chapter is to provide, in plain English, a guide to the capabilities and shortcomings of turbulence models for reproducing satisfactorily engineering flows where buoyant or stratification effects are important. While these two descriptors are often used interchangeably in the literature, in the present chapter buoyant is used to denote a situation where the effect of gravity is to cause a force field whose primary effect is on the mean flow, while stratified implies that the principal effects on the flow arise from gravitational action on the turbulent fluctuating velocities. The distinction is neither pedantic nor unimportant; for, a stratified flow will ordinarily require a more rigorous modelling of gravitational effects than a buoyant flow. Put another way, gravitational effects on horizontal flows are more troublesome than on vertical flows. The account may hopefully also be useful where the flows of interest are affected by other types of force field, perhaps particularly flows affected by Coriolis forces or swirl.

The chapter gives especial attention to two-equation models of turbulence as this is currently the main level of commercial CFD. Linear two-equation eddyviscosity models are considered first, beginning with the situation where buoyant/stratification effects are absent. This is important to enable the reader to assess whether, for the flows of interest, a linear eddy viscosity model would be suitable even in a uniform density situation. Thereafter, the treatment of buoyant flows with linear two-equation models is considered.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×