Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-16T23:25:16.460Z Has data issue: false hasContentIssue false

7 - Randomness

Published online by Cambridge University Press:  05 April 2013

Scott Aaronson
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

In the last two chapters, we talked about computational complexity up till the early 1970s. Here, we'll add a new ingredient to our already simmering stew – something that was thrown in around the mid-1970s, and that now pervades complexity to such an extent that it's hard to imagine doing anything without it. This new ingredient is randomness.

Certainly, if you want to study quantum computing, then you first have to understand randomized computing. I mean, quantum amplitudes only become interesting when they exhibit some behavior that classical probabilities don't: contextuality, interference, entanglement (as opposed to correlation), etc. So we can't even begin to discuss quantum mechanics without first knowing what it is that we're comparing against.

Alright, so what is randomness? Well, that’s a profound philosophical question, but I’m a simpleminded person. So, you’ve got some probability p, which is a real number in the unit interval [0, 1]. That’s randomness.

But wasn’t it a big achievement when Kolmogorov put probability on an axiomatic basis in the 1930s? Yes, it was! But in this chapter, we’ll only care about probability distributions over finitely many events, so all the subtle questions of integrability, measurability, and so on won’t arise. In my view, probability theory is yet another example where mathematicians immediately go to infinite-dimensional spaces, in order to solve the problem of having a nontrivial problem to solve! And that’s fine – whatever floats your boat. I’m not criticizing that. But in theoretical computer science, we’ve already got our hands full with 2n choices. We need 2ℵ0 choices like we need a hole in the head.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gill, J., Computational Complexity of Probabilistic Turing Machines, SIAM Journal on Computing 6:4 (1977), 675–695
Karp, R. M. and Lipton, R. J., Turing machines that take advice, L'Enseignement Mathématique 28 (1982), 191–209
Impagliazzo, R. and Wigderson, A., P = BPP if E requires exponential circuits: derandomizing the XOR lemma. In Proceedings of ACM Symposium on Theory of Computing (New York: ACM, 1997), pp. 220–9Google Scholar
Kabanets, V. and Impagliazzo, R., Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity, 13:1/2 (2004), 1–46CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Randomness
  • Scott Aaronson, Massachusetts Institute of Technology
  • Book: Quantum Computing since Democritus
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979309.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Randomness
  • Scott Aaronson, Massachusetts Institute of Technology
  • Book: Quantum Computing since Democritus
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979309.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Randomness
  • Scott Aaronson, Massachusetts Institute of Technology
  • Book: Quantum Computing since Democritus
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979309.008
Available formats
×