Skip to main content
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Hubbard, Timothy L. and Ruppel, Susan E. 2018. Representational momentum and anisotropies in nearby visual space. Attention, Perception, & Psychophysics, Vol. 80, Issue. 1, p. 94.

    Jancke, Dirk 2017. Catching the voltage gradient—asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald. Neurophotonics, Vol. 4, Issue. 3, p. 031206.

    Hubbard, Timothy L. and Ruppel, Susan E. 2013. Displacement of location in illusory line motion. Psychological Research, Vol. 77, Issue. 3, p. 260.

    Bocianski, Diana Müsseler, Jochen and Erlhagen, Wolfram 2008. Relative mislocalization of successively presented stimuli. Vision Research, Vol. 48, Issue. 21, p. 2204.

  • Print publication year: 2010
  • Online publication date: October 2010

25 - Bridging the gap: a model of common neural mechanisms underlying the Fröhlich effect, the flash-lag effect, and the representational momentum effect

from Part IV - Spatial phenomena: forward shift effects


In recent years, the study and interpretation of mislocalization phenomena observed with moving objects have caused an intense debate about the processing mechanisms underlying the encoding of position. We use a neurophysiologically plausible recurrent network model to explain visual illusions that occur at the start, midposition, and end of motion trajectories known as the Fröhlich, the flash-lag, and the representational momentum effect, respectively. The model implements the idea that trajectories are internally represented by a traveling activity wave in position space, which is essentially shaped by local feedback loops within pools of neurons. We first use experimentally observed trajectory representations in the primary visual cortex of cat to adjust the spatial ranges of lateral interactions in the model. We then show that the readout of the activity profile at adequate points in time during the build-up, midphase, and decay of the wave qualitatively and quantitatively explain the known dependence of the mislocalization errors on stimulus attributes such as contrast and speed. We conclude that cooperative mechanisms within the network may be responsible for the three illusions, with a possible intervention of top-down influences that modulate the efficacy of the lateral interactions.


Localizing an object in the presence of motion is a fundamental ability for many species as a moving object often represents danger or food. In recent years, advances in neurophysiology and psychophysics have substantially increased our understanding of how the visual system calculates the present and future positions of moving objects.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Space and Time in Perception and Action
  • Online ISBN: 9780511750540
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
Abeles, M. (1991). Corticonics. Cambridge: Cambridge University Press.
Baldo, M. V. C., & Caticha, N. (2005). Computational neurobiology of the flash-lag effect. Vision Res 45: 2620–2630.
Baldo, M. V. C., & Klein, S. A. (1995). Extrapolation or attention shift? Nature 378: 565–566.
Ben-Yishai, R., Hansel, D., & Sompolinsky, H. (1997). Traveling waves and the processing of weakly tuned inputs in a cortical network module. J Comp Neurosci 4: 57–77.
Berry, M. J. II, Brivanlou, I. H., Jordan, T. A., & Meister, M. (1999). Anticipation of moving stimuli by the retina. Nature 398: 334–338.
Bringuier, V., Chavane, F., Glaeser, L., & Frégnac, Y. (1999). Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283: 695–699.
Coltheart, M. (1980). Iconic memory and visible persistence. Perception & Psychophysics 27: 183–228.
Dayan, P., & Abbott, L. F. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press.
Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C., & Suarez, H. (1995). Recurrent excitation in neocortical circuits. Science 269: 981–985.
Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.
Erlhagen, W. (2003). Internal models for visual perception. Biol Cybern 88: 409–417.
Erlhagen, W., Bastian, A., Jancke, D., Riehle, A., & Schöner, G. (1999). The distribution of neuronal population activation (DPA) as a tool to study interaction and integration in cortical representations. J Neurosci Methods 94: 53–66.
Erlhagen, W., & Jancke, D. (2004). The role of action plans and other cognitive factors in motion extrapolation: a modelling study. Vis Cogn 11(2/3): 315–340.
Fitzpatrick, D. (2000). Seeing beyond the receptive field in primary visual cortex. Curr Opin Neurobiol 10: 438–443.
Freyd, J. J., & Finke, R. A. (1984). Representational momentum. J Exp Psych Learn Mem Cogn 10: 126–132.
Fröhlich, F. W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54: 58–78.
Fu, Y., Shen, Y., & Yang, D. (2001). Motion-induced perceptual extrapolation of blurred visual targets. J Neurosci 21 (RC 172): 1–5.
Giese, M., & Xie, X. (2002). Exact solution of the nonlinear dynamics of recurrent neural mechanisms for direction selectivity. Neurocomp 44–46: 417–422
Gilbert, S. D. (1995). Dynamic properties of adult visual cortex. In M., Gazzaniga (ed.), The Cognitive Neurosciences (73–90). Cambridge: MIT Press.
Grinvald, A., Lieke, E., Frostig, R., & Hildesheim, R. (1994). Real-time optical imaging of naturally evoked electrical activity in intact frog brain. J Neurosci 14: 2545–2568.
Grossberg, S. (1988). Nonlinear neural networks: principles, mechanisms, and architectures. Neural Networks 1: 17–61.
Hahnloser, R., Douglas, R. J., Mahowald, M., & Hepp, K. (1999). Feedback interactions between neuronal pointers and maps for attentional processing. Nat Neurosci 2(8): 746–752.
Hubbard, T. L. (1990). Cognitive representation of linear motion: possible direction and gravity effects in judged displacement. Memory & Cognition 18(3): 299–309.
Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics 44: 211–221.
Hubbard, T. L., & Motes, M. A. (2002). Does representational momentum reflect a distortion of the length or the endpoint of a trajectory? Cognition 82: B89–B99.
Jancke, D., Chavane, F., Naaman, S., & Grinvald, A. (2004a). Imaging correlates of visual illusion in early visual cortex. Nature 428: 423–426.
Jancke, D., Erlhagen, W., Dinse, H. R., Akhavan, A. C., Giese, M., Steinhage, A., et al. (1999). Parametric population representation of retinal location: neuronal interaction dynamics in cat primary visual cortex. J Neurosci 19: 9016–9028.
Jancke, D., Erlhagen, W., Schöner, G., & Dinse, H. R. (2004b). Shorter latencies for motion trajectories for flashes in population responses of cat visual cortex. J Physiol 556.3: 971–982.
Khurana, B., & Nijhawan, R. (1995). Extrapolation or attentional shift? Nature 378: 565–566.
Kirschfeld, K., & Kammer, T. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vis Res 39: 3702–3709.
Kreegipuu, K., & Allik, J. (2003). Perceived onset time and position of a moving stimulus. Vision Res 43: 1625–1635.
Krekelberg, B., & Lappe, M. (2000). A model of the perceived relative positions of moving objects based upon a slow averaging process. Vision Res 40: 201–215.
Krekelberg, B., & Lappe, M. (2001). Neuronal latencies and the position of moving objects. TINS 24: 335–339.
Lamme, V. A. F., & Roelfsema, R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. TINS 23: 571–579.
Lennie, P. (1981). The physiological basis of variations of visual latency. Vision Res. 21: 815–824.
Li, W., Piëch, V., & Gilbert, C. D. (2004). Perceptual learning and top-down influences in primary visual cortex. Nat Neurosci 7(6): 651–657.
Maiche, A., Budelli, R., & Gómez-Sena, L. (2007). Spatial facilitation is involved in the flash-lag effect. Vision Res 47: 1655–1661.
Metzger, W. (1932). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit. Psychologische Forschung 16: 176–200.
Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation. Perception & Psychophysics 60: 683–695.
Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum. Vis Cog 9(1/2): 120–138.
Nijhawan, R. (1994). Motion extrapolation in catching. Nature 370: 256–257.
Nijhawan, R., Watanabe, K., Khurana, B., & Shimojo, S. (2004). Compensation of neural delays in visual-motor behaviour: no evidence for shorter afferent delays for visual motion. Vis Cog 11(2/3): 275–298.
Purushothaman, G., Patel, S. S., Bedell, H. E., & Öğmen, H. (1998). Moving ahead through differential visual latency. Nature 396: 424.
Salinas, E., & Abbott, L. F. (1994). Vector reconstruction from firing rates. J Comput Neurosci 1: 89–107.
Thornton, I. M. (2002). The onset repulsion effect. Spatial Vision 15: 219–243.
Whitney, D. (2002). The influence of visual motion on perceived position. TICS 6: 211–216.
Whitney, D., Cavanagh, P., & Murakami, I. (2000). Temporal facilitation for moving stimuli is independent of changes in direction. Vision Res 40: 3829–3839.
Whitney, D., Murakami, I., & Cavanagh, P. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Res 40: 137–149.
Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik (Biol Cybern) 13: 55–80.