Skip to main content
×
Home
  • Print publication year: 2017
  • Online publication date: May 2017

7 - Formation of Bose-Einstein Condensates

from Part II - General Topics
Summary

The problem of understanding how a coherent, macroscopic Bose- Einstein condensate (BEC) emerges from the cooling of a thermal Bose gas has attracted significant theoretical and experimental interest over several decades. The pioneering achievement of BEC in weakly interacting dilute atomic gases in 1995 was followed by a number of experimental studies examining the growth of the BEC number, as well as the development of its coherence. More recently, there has been interest in connecting such experiments to universal aspects of nonequilibrium phase transitions, in terms of both static and dynamical critical exponents. Here, the spontaneous formation of topological structures such as vortices and solitons in quenched cold-atom experiments has enabled the verification of the Kibble-Zurek mechanism predicting the density of topological defects in continuous phase transitions, first proposed in the context of the evolution of the early universe. This chapter reviews progress in the understanding of BEC formation and discusses open questions and future research directions in the dynamics of phase transitions in quantum gases.

Introduction

The equilibrium phase diagram of the dilute Bose gas exhibits a continuous phase transition between condensed and noncondensed phases. The order parameter characteristic of the condensed phase vanishes above some critical temperature Tc and grows continuously with decreasing temperature below this critical point. However, the dynamical process of condensate formation has proved to be a challenging phenomenon to address both theoretically and experimentally. This formation process is a crucial aspect of Bose systems and of direct relevance to all condensates discussed in this book, despite their evident system-specific properties. Important questions leading to intense discussions in the early literature include the time scale for condensate formation and the role of inhomogeneities and finite-size effects in “closed” systems. These issues are related to the concept of spontaneous symmetry breaking, its causes, and implications for physical systems (see, for example, Chapter 5 by Snoke and Daley).

In this chapter, we give an overview of the dynamics of condensate formation and describe the present understanding provided by increasingly well-controlled cold-atom experiments and corresponding theoretical advances over the past twenty years. We focus on the growth of BECs in cooled Bose gases, which, from a theoretical standpoint, requires a suitable nonequilibrium formalism.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Universal Themes of Bose-Einstein Condensation
  • Online ISBN: 9781316084366
  • Book DOI: https://doi.org/10.1017/9781316084366
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
[1] Proukakis N. P., Gardiner S. A., Davis M. J., and Szymańska M. (eds). 2013. Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics. London, UK: Imperial College Press.
[2] Griffin A., Nikuni T., and Zaremba E. 2009. Bose-Condensed Gases at Finite Temperatures. Cambridge, UK: Cambridge University Press.
[3] Popov V. N. 1972. On the theory of the superfluidity of two- and one-dimensional Bose systems. Theor. Math. Phys., 11, 565.
[4] Popov V. N. 1983. Functional Integrals in Quantum Field Theory and Statistical Physics. Dordrecht, Netherlands: Reidel.
[5] Gardiner C. W. 1997. Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross-Pitaevskii equation for a highly condensed Bose gas. Phys. Rev. A, 56, 1414.
[6] Castin Y., and Dum R. 1998. Low-temperature Bose-Einstein condensates in timedependent traps: beyond th. U(1) symmetry-breaking approach. Phys. Rev. A, 57, 3008.
[7] Gardiner S. A., and Morgan S. A. 2007. Number-conserving approach to a minimal self-consistent treatment of condensate and noncondensate dynamics in a degenerate Bose gas. Phys. Rev. A, 75, 043621.
[8] Inoue A., and Hanamura E. 1976. Emission spectrum from the Bose-condensed excitonic molecules. J. Phys. Soc. Jpn., 41, 771.
[9] Levich E., and Yakhot V. 1977a. Time evolution of a Bose system passing through the critical point. Phys. Rev. B, 15, 243.
[10] Levich E., and Yakhot V. 1977b. Kinetics of phase transition in ideal and weakly interacting Bose gas. J. Low Temp. Phys., 27, 107.
[11] Levich E., and Yakhot V. 1978. Time development of coherent and superfluid properties in the course of. ƛ-transition. J. Phys. A, 11, 2237.
[12] Zeldovich Ya. B., and Levich E. V. 1968. Bose condensation and shock waves in photon spectra. [Zh. Eksp. Teor. Fiz. 55, 2423 (1968)] Sov. Phys. JETP, 28, 1287.
[13] Pitaevskii L. P., and Stringari S. 2003. Bose-Einstein Condensation. Oxford, UK: Clarendon Press.
[14] Tikhodeev S. G. 1990. Bose condensation of finite-lifetime particles with excitons as an example. [Zh. Eksp. Teor. Fiz. 97, 681 (1990)] Sov. Phys. JETP, 70, 380.
[15] Eckern U. 1984. Relaxation processes in a condensed Bose gas. J. Low Temp. Phys., 54, 333.
[16] Snoke D. W., and Wolfe J. P. 1989. Population dynamics of a Bose gas near saturation. Phys. Rev. B, 39, 4030.
[17] Stoof H. T. C. 1991. Formation of the condensate in a dilute Bose gas. Phys. Rev. Lett., 66, 3148.
[18] Stoof H. T. C. 1992. Nucleation of Bose-Einstein condensation. Phys. Rev. A, 45, 8398.
[19] Stoof H. T. C. 1995. Bose-Einstein Condensation. Cambridge, UK: Cambridge University Press. Chap. Condensate formation in a Bose gas, page 226.
[20] Stoof H. T. C. 1997. Initial stages of Bose-Einstein condensation. Phys. Rev. Lett., 78, 768.
[21] Stoof H. T. C. 1999. Coherent versus incoherent dynamics during Bose-Einstein condensation in atomic gases. J. Low Temp. Phys., 114, 11.
[22] Svistunov B. V. 1991. Highly nonequilibrium Bose condensation in a weakly interacting gas. J. Mosc. Phys. Soc., 1, 373.
[23] Kagan Yu., Svistunov B. V., and Shlyapnikov G. V. 1992. Kinetics of Bose condensation in an interacting Bose gas. Zh. Éksp. Teor. Fiz., 101, 528. [Sov. Phys. JETP 75, 387 (1992)].
[24] Kagan Yu., and Svistunov B. V. 1994. Kinetics of the onset of long-range order during Bose condensation in an interacting gas. Zh. Éksp. Teor. Fiz., 105, 353.
[Sov. Phys. JETP 78, 187 (1994)].
[25] Kagan Yu.. 1995. Bose-Einstein Condensation. Cambridge, UK: Cambridge University Press. Chap. Kinetics of Bose-Einstein condensate formation in an interacting Bose gas, page 202.
[26] Sieberer L. M., Huber S. D., Altman E., and Diehl S. 2013. Dynamical critical phenomena in driven-dissipative systems. Phys. Rev. Lett., 110, 195301.
[27] Altman E., Sieberer L. M., Chen L., Diehl S., and Toner J. 2015. Two-dimensional superfluidity of exciton polaritons requires strong anisotropy. Phys. Rev. X, 5, 011017.
[28] Dagvadorj G., Fellows J. M., Matyjaskiewicz S., Marchetti F. M., Carusotto I., and Szymanska M. H. 2015. Non-equilibrium Berezinskii-Kosterlitz-Thouless transition in a driven open quantum system. Phys. Rev. X, 5, 041028.
[29] Zakharov V. E., L'vov V. S., and Falkovich G. 1992. Kolmogorov Spectra of Turbulence I: Wave Turbulence. Berlin, Germany: Springer-Verlag.
[30] Semikoz D. V., and Tkachev I. I. 1995. Kinetics of Bose condensation. Phys. Rev. Lett., 74, 3093.
[31] Semikoz D. V., and Tkachev I. I. 1997. Condensation of bosons in the kinetic regime. Phys. Rev. D, 55, 489.
[32] Berloff N. G., and Svistunov B. V. 2002. Scenario of strongly nonequilibrated Bose- Einstein condensation. Phys. Rev. A, 66, 013603.
[33] Nowak B., Schole J., and Gasenzer T. 2014. Universal dynamics on the way to thermalisation. New J. Phys., 16, 093052.
[34] Schwarz K. W. 1988. Three-dimensional vortex dynamics in superfluid 4He: homogeneous superfluid turbulence. Phys. Rev. B, 38, 2398.
[35] Kozik E., and Svistunov B. 2004. Kelvin-wave cascade and decay of superfluid turbulence. Phys. Rev. Lett., 92, 035301.
[36] Kozik E., and Svistunov B. 2005. Scale-separation scheme for simulating superfluid turbulence: Kelvin-wave cascade. Phys. Rev. Lett., 94, 025301.
[37] Kozik E., and Svistunov B. 2005. Vortex-phonon interaction. Phys. Rev. B, 72, 172505.
[38] Kozik E. V., and Svistunov B. V. 2009. Theory of decay of superfluid turbulence in the low-temperature limit. J. Low Temp. Phys., 156, 215.
[39] Anderson M. H., Ensher J. R., Matthews M. R., Wieman C. E., and Cornell E. A. 1995. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269, 198.
[40] Davis K. B., Mewes M. O., Andrews M. R., van Druten N. J., Durfee D. S., Kurn D. M., and Ketterle W. 1995. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969.
[41] Ketterle W., and van Druten N. J. 1996. Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys., 37, 181.
[42] Gardiner C. W., and Zoller P. 1997. Quantum kinetic theory: a quantum kinetic master equation for condensation of a weakly interacting Bose gas without a trapping potential. Phys. Rev. A, 55, 2902.
[43] Gardiner C. W., and Zoller P. 1998. Quantum kinetic theory III: quantum kinetic master equation for strongly condensed trapped systems. Phys. Rev. A, 58, 536.
[44] Gardiner C. W., and Zoller P. 2000. Quantum kinetic theory V: quantum kinetic master equation for mutual interaction of condensate and noncondensate. Phys. Rev. A, 61, 033601.
[45] Gardiner C. W., and Zoller P. 2004. Quantum Noise. 3rd edn. Berlin and Heidelberg, Germany: Springer-Verlag.
[46] Miesner H.-J., Stamper-Kurn D. M., Andrews M. R., Durfee D. S., Inouye S., and Ketterle W. 1998. Bosonic stimulation in the formation of a Bose-Einstein condensate. Science, 279, 1005.
[47] Gardiner C. W., Zoller P., Ballagh R. J., and Davis M. J. 1997. Kinetics of Bose- Einstein condensation in a trap. Phys. Rev. Lett., 79, 1793.
[48] Gardiner C. W., Lee M. D., Ballagh R. J., Davis M. J., and Zoller P. 1998. Quantum kinetic theory of condensate growth: comparison of experiment and theory. Phys. Rev. Lett., 81, 5266.
[49] Lee M. D., and Gardiner C. W. 2000. Quantum kinetic theory. VI. The growth of a Bose-Einstein condensate. Phys. Rev. A, 62, 033606.
[50] Davis M. J., Gardiner C. W., and Ballagh R. J. 2000. Quantum kinetic theory. VII. The influence of vapor dynamics on condensate growth. Phys. Rev. A, 62, 063608.
[51] Bijlsma M. J., Zaremba E., and Stoof H. T. C. 2000. Condensate growth in trapped Bose gases. Phys. Rev. A, 62, 063609.
[52] Zaremba E., Nikuni T., and Griffin A. 1999. Dynamics of trapped Bose gases at finite temperatures. J. Low Temp. Phys., 116, 277.
[53] Zaremba E., Griffin A., and Nikuni T. 1998. Two-fluid hydrodynamics for a trapped weakly interacting Bose gas. Phys. Rev. A, 57, 4695.
[54] Kirkpatrick T. R., and Dorfman J. R. 1983. Transport theory for a weakly interacting condensed Bose gas. Phys. Rev. A, 28, 2576.
[55] Kirkpatrick T. R., and Dorfman J. R. 1985. Transport coefficients in a dilute but condensed Bose gas. J. Low Temp. Phys., 58, 399.
[56] Kirkpatrick T. R., and Dorfman J. R. 1985. Transport in a dilute but condensed nonideal Bose gas: kinetic equations. J. Low Temp. Phys., 58, 301.
[57] Kirkpatrick T. R., and Dorfman J. R. 1985c. Time correlation functions and transport coefficients in a dilute superfluid. J. Low Temp. Phys., 59, 1.
[58] Luiten O. J., Reynolds M. W., and Walraven J. T. M. 1996. Kinetic theory of the evaporative cooling of a trapped gas. Phys. Rev. A, 53, 381.
[59] Köhl M., Davis M. J., Gardiner C. W., Hänsch T. W., and Esslinger T. W. 2002. Growth of Bose-Einstein condensates from thermal vapor. Phys. Rev. Lett., 88, 080402.
[60] Davis M. J., and Gardiner C. W. 2002. Growth of a Bose-Einstein condensate: a detailed comparison of theory and experiment. J. Phys. B: At. Mol. Opt. Phys., 35, 733.
[61] Pinske P. W. H., Mosk A., Weidemüller M., Reynolds M. W., Hijmans T. W., and Walraven J. T. M. 1997. Adiabatically changing the phase-space density of a trapped Bose gas. Phys. Rev. Lett., 78, 990.
[62] Stamper-Kurn D. M., Miesner H.-J., Chikkatur A. P., Inouye S., Stenger J., and Ketterle W. 1998. Reversible formation of a Bose-Einstein condensate. Phys. Rev. Lett., 81, 2194.
[63] Stoof H. T. C., and Bijlsma M. J. 2001. Dynamics of fluctuating Bose-Einstein condensates. J. Low. Temp. Phys., 124, 431.
[64] Proukakis N. P., Schmiedmayer J., and Stoof H. T. C. 2006. Quasicondensate growth on an atom chip. Phys. Rev. A, 73, 053603.
[65] Garrett M. C., Ratnapala A., van Ooijen E. D., Vale C. J., Weegink K., Schnelle S. K., Vainio O., Heckenberg N. R., Rubinsztein-Dunlop H., and Davis M. J. 2011. Growth dynamics of a Bose-Einstein condensate in a dimple trap without cooling. Phys. Rev. A, 83, 013630.
[66] Harber D. M., McGuirk J. M., Obrecht J. M., and Cornell E. A. 2003. Thermally induced losses in ultra-cold atoms magnetically trapped near room-temperature surfaces. J. Low Temp. Phys., 133, 229.
[67] Marchant A. L., Händel S., Wiles T. P., Hopkins S. A., and Cornish S. L. 2011. Guided transport of ultracold gases of rubidium up to a room-temperature dielectric surface. New J. Phys., 13, 125003.
[68] Märkle J., Allen A. J., Federsel P., Jetter B., Günther A., Fortágh J., Proukakis N. P., and Judd T. E. 2014. Evaporative cooling of cold atoms at surfaces. Phys. Rev. A, 90, 023614.
[69] Imamovic-Tomasovic M., and Griffin A. 2001. Quasiparticle kinetic equation in a trapped Bose gas at low temperatures. J. Low Temp. Phys., 122, 616.
[70] Kadanoff L. P., and Baym G. 1962. Quantum Statistical Mechanics. Menlo Park, CA: W. A. Benjamin.
[71] Walser R., Williams J., Cooper J., and Holland M. 1999. Quantum kinetic theory for a condensed bosonic gas. Phys. Rev. A, 59, 3878.
[72] Walser R., Cooper J., and Holland M. 2001. Reversible and irreversible evolution of a condensed bosonic gas. Phys. Rev. A, 63, 013607.
[73] Wachter J., Walser R., Cooper J., and Holland M. 2001. Equivalence of kinetic theories of Bose-Einstein condensation. Phys. Rev. A, 64, 053612.
[74] Proukakis N. P. 2001. Self-consistent quantum kinetics of condensate and noncondensate via a coupled equation of motion formalism. J. Phys. B: At. Mol. Opt. Phys., 34, 4737.
[75] Proukakis N. P., and Burnett K. 1996. J. Res. Natl. Inst. Stand. Technol., 101, 457.
[76] Proukakis N. P., Burnett K., and Stoof H. T. C. 1998. Microscopic treatment of binary interactions in the nonequilibrium dynamics of partially Bose-condensed trapped gases. Phys. Rev. A, 57, 1230.
[77] Shi H., and Griffin A. 1998. Finite-temperature excitations in a dilute Bosecondensed gas. Phys. Rep., 304, 187.
[78] Barci D. G., Fraga E. S., and Ramos R. O. 2000. A nonequilibrium quantum field theory description of the Bose-Einstein condensate. Phys. Rev. Lett., 85, 479.
[79] Gasenzer T., Berges J., Schmidt M. G., and Seco M. 2005. Nonperturbative dynamical many-body theory of a Bose-Einstein condensate. Phys. Rev. A, 72, 063604.
[80] Berges J., and Gasenzer T. 2007. Quantum versus classical statistical dynamics of an ultracold Bose gas. Phys. Rev. A, 76, 033604.
[81] Branschädel A., and G. Thomas. 2008. 2PI nonequilibrium versus transport equations for an ultracold Bose gas. J. Phys. B: At. Mol. Opt. Phys., 41, 135302.
[82] Bodet C., Kronenwett M., Nowak B., Sexty D., and Gasenzer T. 2012. Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics. College Press, London. Chap. Non-equilibrium quantum many-body dynamics: functional integral approaches.
[83] Berges J., Rothkopf A., and Schmidt J. 2008. Non-thermal fixed points: effective weak-coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett., 101, 041603.
[84] Berges J., and Hoffmeister G. 2009. Nonthermal fixed points and the functional renormalization group. Nucl. Phys., B813, 383.
[85] Scheppach C., Berges J., and Gasenzer T. 2010. Matter-wave turbulence: beyond kinetic scaling. Phys. Rev. A, 81, 033611.
[86] Kronenwett M., and Gasenzer T. 2011. Far-from-equilibrium dynamics of an ultracold Fermi gas. Appl. Phys. B, 102, 469.
[87] Babadi M., Demler E., and Knap M. 2015. Far-from-equilibrium field theory of many-body quantum spin systems: prethermalization and relaxation of spin spiral states in three dimensions. Phys. Rev. X, 5, 041005.
[88] Myatt C. J., Burt E. A., Ghrist R. W., Cornell E. A., and Wieman C. E. 1997. Production of two overlapping Bose-Einstein condensates by sympathetic cooling. Phys. Rev. Lett., 78, 586.
[89] Schreck F., Ferrari G., Corwin K. L., Cubizolles J., Khaykovich L., Mewes M.-O., and Salomon C. 2001. Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy. Phys. Rev. A, 64, 011402.
[90] Catani J., Barontini G., Lamporesi G., Rabatti F., Thalhammer G., Minardi F., Stringari S., and Inguscio M. 2009. Entropy exchange in a mixture of ultracold atoms. Phys. Rev. Lett., 103, 140401.
[91] Erhard M., Schmaljohann H., Kronjäger J., Bongs K., and Sengstock K. 2004. Bose-Einstein condensation at constant temperature. Phys. Rev. A, 70, 031602.R).
[92] Shin Y., Saba M., Schirotzek A., Pasquini T. A., Leanhardt A. E., Pritchard D. E., and Ketterle W. 2004. Distillation of Bose-Einstein condensates in a double-well potential. Phys. Rev. Lett., 92, 150401.
[93] Stellmer S., Pasquiou B., Grimm R., and Schreck F. 2013. Laser cooling to quantum degeneracy. Phys. Rev. Lett., 110, 263003.
[94] Kosterlitz J. M., and Thouless D. J. 1973. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C., 6, 1181.
[95] Hadzibabic Z., Kruger P., Cheneau M., Battelier B., and Dalibard J. 2006. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature, 441, 1118.
[96] Schweikhard V., Tung S., and Cornell E. A. 2007. Vortex proliferation in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose- Einstein condensates. Phys. Rev. Lett., 99, 030401.
[97] Krüger P., Hadzibabic Z., and Dalibard J. 2007. Critical point of an interacting two-dimensional atomic Bose gas. Phys. Rev. Lett., 99, 040402.
[98] Cladé P., Ryu C., Ramanathan A., Helmerson K., and Phillips W. D. 2009. Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett., 102, 170401.
[99] Tung S., Lamporesi G., Lobser D., Xia L., and Cornell E. A. 2010. Observation of the presuperfluid regime in a two-dimensional Bose gas. Phys. Rev. Lett., 105, 230408.
[100] Hung C.-L., Zhang X., Gemekle N., and Chin C. 2011. Observation of scale invariance and universality in two-dimensional Bose gases. Nature, 470, 236.
[101] Prokof'ev N., Ruebenacker O., and Svistunov B. 2001. Critical point of a weakly interacting two-dimensional Bose gas. Phys. Rev. Lett., 87, 270402.
[102] Simula T. P., and Blakie P. B. 2006. Thermal activation of vortex-antivortex pairs in quasi-two-dimensional Bose-Einstein condensates. Phys. Rev. Lett., 96, 020404.
[103] Holzmann M., and Krauth W. 2008. Kosterlitz-Thouless transition of the quasitwo- dimensional trapped Bose gas. Phys. Rev. Lett., 100, 190402.
[104] Bisset R. N., Davis M. J., Simula T. P., and Blakie P. B. 2009. Quasicondensation and coherence in the quasi-two-dimensional trapped Bose gas. Phys. Rev. A, 79, 033626.
[105] Cockburn S. P., and Proukakis N. P. 2012. Ab initio methods for finite-temperature two-dimensional Bose gases. Phys. Rev. A, 86, 033610.
[106] Hadzibabic Z., and Dalibard J. 2011. Nano optics and atomics: transport of light and matter waves. Proceedings of the International School of Physics “Enrico Fermi,” vol. CLXXIII, vol. 34. Rivista del Nuovo Cimento. Chap. Two dimensional Bose fluids: an atomic physics perspective, page 389.
[107] Roumpos G., Lohse M., Nitsche W. H., Keeling J., Szymańska M. H., Littlewood P. B., Löffler A., Höfling S., Worschech L., Forchel A., and Yamamoto Y.. 2012. Power-law decay of the spatial correlation function in exciton-polariton condensates. Proc. Natl. Acad. Sci. U.S.A., 109(17), 6467–6472.
[108] Nitsche W. H., Kim N. Y., Roumpos G., Schneider C., Kamp M., Höfling S., Forchel A., and Yamamoto Y. 2014. Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas. Phys. Rev. B, 90, 205430.
[109] Petrov D. S., Shlyapnikov G. V., and Walraven J. T. M. 2001. Phase-fluctuating 3D Bose-Einstein condensates in elongated traps. Phys. Rev. Lett., 87, 050404.
[110] Shvarchuck I., Buggle Ch., Petrov D. S., Dieckmann K., Zielonkowski M., Kemmann M., Tiecke T. G., von Klitzing W., Shlyapnikov G. V., and Walraven J. T. M. 2002. Bose-Einstein condensation into nonequilibrium states studied by condensate focusing. Phys. Rev. Lett., 89, 270404.
[111] Hugbart M., Retter J. A., Varón A. F., Bouyer P., Aspect A., and Davis M. J. 2007. Population and phase coherence during the growth of an elongated Bose-Einstein condensate. Phys. Rev. A, 75, 011602.
[112] Binney J. J., Dowrick N. J., Fisher A. J., and Newman M. E. J. 1992. The Theory of Critical Phenomena: An Introduction to the Renormalization Group. New York, NY: Oxford University Press.
[113] Zinn-Justin J. 2002. Quantum Field Theory and Critical Phenomena. 4th edn. Oxford, UK: Clarendon Press.
[114] Hohenberg P. C., and Halperin B. I. 1977. Theory of dynamic critical phenomena. Rev. Mod. Phys., 49, 435.
[115] Baym G., Blaizot J.-P., Holzmann M., Lalöe F., and Vautherin D. 1999. The transition temperature of the dilute interacting Bose gas. Phys. Rev. Lett., 83, 1703.
[116] Kashurnikov V. A., Prokof'ev N. V., and Svistunov B. V. 2001. Critical temperature shift in weakly interacting Bose gas. Phys. Rev. Lett., 87, 120402.
[117] Arnold P., and Moore G. 2001. BEC transition temperature of a dilute homogeneous imperfect Bose gas. Phys. Rev. Lett., 87, 120401.
[118] Gerbier F., Thywissen J. H., Richard S., Hugbart M., Bouyer P., and Aspect A. 2004. Critical temperature of a trapped, weakly interacting Bose gas. Phys. Rev. Lett., 92, 030405.
[119] Davis M. J., and Blakie P. B. 2006. Critical temperature of a trapped Bose gas: comparison of theory and experiment. Phys. Rev. Lett., 96, 060404.
[120] Smith R. P., Campbell R. L. D., Tammuz N., and Hadzibabic Z. 2011. Effects of interactions on the critical temperature of a trapped Bose gas. Phys. Rev. Lett., 106, 250403.
[121] Ritter S., Öttl A., Donner T., Bourdel T., Köhl M., and Esslinger T. 2007. Observing the formation of long-range order during Bose-Einstein condensation. Phys. Rev. Lett., 98, 090402.
[122] Donner T., Ritter S., Bourdel T., Öttl A., Köhl M., and Esslinger T. 2007. Critical behavior of a trapped interacting Bose gas. Science, 315, 1556.
[123] Bezett A., and Blakie P. B. 2009. Critical properties of a trapped interacting Bose gas. Phys. Rev. A, 79, 033611.
[124] Navon N., Gaunt A. L., Smith R. P., and Hadzibabic Z. 2015. Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science, 347, 167.
[125] Kibble T. W. B. 1976. Topology of cosmic domains and strings. J. Phys. A: Math. Gen., 9, 1387.
[126] Landau L. D., and Lifshitz E. M. 1980. Statistical Physics, Part 1. 3rd edn. Oxford, UK: Butterworth-Heinemann.
[127] Zurek W. H. 1985. Cosmological experiments in superfluid helium. Nature, 317, 505.
[128] Zurek W. H. 1996. Cosmological experiments in condensed matter systems. Phys. Rep., 276, 177.
[129] Anglin J. R., and Zurek W. H. 1999. Vortices in the wake of rapid Bose-Einstein condensation. Phys. Rev. Lett, 83, 1707.
[130] Weiler C. N., Neely T. W., Scherer D. R., Bradley A. S., Davis M. J., and Anderson B. P. 2008. Spontaneous vortices in the formation of Bose-Einstein condensates. Nature, 455, 948.
[131] Freilich D. V., Bianchi D. M., Kaufman A. M., Langin T. K., and Hall D. S. 2010. Real-time dynamics of single vortex lines and vortex dipoles in a Bose-Einstein condensate. Science, 329, 1182.
[132] Gardiner C. W., and Davis M. J. 2003. The stochastic Gross-Pitaevskii equation: II. J. Phys. B: At. Mol. Opt. Phys., 36, 4731.
[133] Blakie P. B., Bradley A. S., Davis M. J., Ballagh R. J., and Gardiner C. W. 2008. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys., 57, 363.
[134] Proukakis N. P., and Jackson B. 2008. Finite temperature models of Bose-Einstein condensation. J. Phys. B: At. Mol. Opt., 41, 203002.
[135] Cockburn S. P., and Proukakis N. P. 2009. The stochastic Gross-Pitaevskii equation and some applications. Laser Phys., 19, 558.
[136] Steel M. J., Olsen M. K., Plimak L. I., Drummond P. D., Tan S. M., Collett M. J., Walls D. F., and Graham R. 1998. Dynamical quantum noise in trapped Bose-Einstein condensates. Phys. Rev. A, 58, 4824.
[137] Drummond P. D., and Corney J. F. 1999. Quantum dynamics of evaporatively cooled Bose-Einstein condensates. Phys. Rev. A., 60, R2661.
[138] Chang J. J., Hamner C., and Engels P. 2009 Formation of Solitons During the BEC Phase Transition. 40th Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics.
Hamner C., and Engels P. 2009 Formation of Solitons During the BEC Phase Transition. 40th Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics.
[139] Zurek W. H. 2009. Causality in condensates: gray solitons as relics of BEC formation. Phys. Rev. Lett., 102, 105702.
[140] Damski B., and Zurek W. H. 2010. Soliton creation during a Bose-Einstein condensation. Phys. Rev. Lett., 104, 160404.
[141] Witkowska E., Deuar P., Gajda M., and Rzażewski K. 2011. Solitons as the early stage of quasicondensate formation during evaporative cooling. Phys. Rev. Lett., 106, 135301.
[142] del Campo A, Retzker A, and Plenio M B. 2011. The inhomogeneous Kibble- Zurek mechanism: vortex nucleation during Bose-Einstein condensation. New J. Phys., 13, 083022.
[143] Lamporesi G., Donadello S., Serafini S., Dalfovo F., and Ferrari G. 2013. Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate. Nat. Phys., 9, 656.
[144] Donadello S., Serafini S., Tylutki M., Pitaevskii L. P., Dalfovo F., Lamporesi G., and Ferrari G. 2014. Observation of solitonic vortices in Bose-Einstein condensates. Phys. Rev. Lett., 113, 065302.
[145] Chomaz L., Corman L., Bienaimé T., Desbuquois R., Weitenberg C., Beugnon J., Nascimbène S., and Dalibard J. 2015. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas. Nat. Comm., 6, 6162.
[146] Corman L., Chomaz L., Bienaimé T., Desbuquois R., Weitenberg C., Nascimbène S., Dalibard J., and Beugnon J. 2014. Quench-induced supercurrents in an annular Bose gas. Phys. Rev. Lett., 113, 135302.
[147] Das A., Sabbatini J., and Zurek W. H. 2012. Winding up superfluid in a torus via Bose Einstein condensation. Sci. Rep., 2, 352.
[148] Chesler P. M., García-García A. M., and Liu H. 2015. Defect formation beyond Kibble-Zurek mechanism and holography. Phys. Rev. X, 5, 021015.
[149] Sadler L. E., Higbie J. M., Leslie S. R., Vengalattore M., and Stamper-Kurn D. M. 2006. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose- Einstein condensate. Nature, 443, 312.
[150] De S., Campbell D. L., Price R. M., Putra A., Anderson B. M., and Spielman I. B. 2014. Quenched binary Bose-Einstein condensates: spin-domain formation and coarsening. Phys. Rev. A, 89, 033631.
[151] Papp S. B., Pino J. M., and Wieman C. E. 2008. Tunable miscibility in a dualspecies Bose-Einstein condensate. Phys. Rev. Lett., 101, 040402.
[152] McCarron D. J., Cho H. W., Jenkin D. L., Köppinger M. P., and Cornish S. L. 2011. Dual-species Bose-Einstein condensate of 87Rb and 133Cs. Phys. Rev. A, 84, 011603.
[153] Liu I.-K., Pattinson R. W., Billam T. P., Gardiner S. A., Cornish S. L., Huang T.-M., Lin W.-W., Gou S.-C., Parker N. G., and Proukakis N. P. 2015. Stochastic growth dynamics and composite defects in quenched immiscible binary condensates. Phys. Rev. A, 93, 023628.
[154] Sabbatini J., Zurek W. H., and Davis M. J. 2011. Phase separation and pattern formation in a binary Bose-Einstein condensate. Phys. Rev. Lett., 107, 230402.
[155] Swisłocki T., Witkowska E., Dziarmaga J., and Matuszewski M. 2013. Double universality of a quantum phase transition in spinor condensates: modification of the Kibble-Zurek mechanism by a conservation law. Phys. Rev. Lett., 110, 045303.
[156] Hofmann J., Natu S. S., and Das Sarma S. 2014. Coarsening dynamics of binary Bose condensates. Phys. Rev. Lett., 113, 095702.
[157] Mathey S., Gasenzer T., and Pawlowski J. M. 2015. Anomalous scaling at nonthermal fixed points of Burgers' and Gross-Pitaevskii turbulence. Phys. Rev. A, 92, 023635.
[158] Pieiro Orioli A., Boguslavski K., and Berges J. 2015. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D, 92, 025041.
[159] Berges J., and Sexty D. 2012. Bose condensation far from equilibrium. Phys. Rev. Lett., 108, 161601.
[160] Nowak B., Sexty D., and Gasenzer T. 2011. Superfluid turbulence: nonthermal fixed point in an ultracold Bose gas. Phys. Rev. B, 84, 020506(R).
[161] Nowak B., Schole J., Sexty D., and Gasenzer T. 2012. Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas. Phys. Rev. A, 85, 043627.
[162] Nowak B., Erne S., Karl M., Schole J., Sexty D., and Gasenzer T. 2013. Non-thermal fixed points: universality, topology, and turbulence in Bose gases. In: Proc. Int. School on Strongly Interacting Quantum Systems Out of Equilibrium, Les Houches, 2012 (to appear). arXiv:1302.1448.
[162] Nowak B., Erne S., Karl M., Schole J., Sexty D., and Gasenzer T. 2013. Non-thermal fixed points: universality, topology, and turbulence in Bose gases. In: Proc. Int. School on Strongly Interacting Quantum Systems Out of Equilibrium, Les Houches, 2012 (to appear). arXiv:1302.1448.
[163] Schole J., Nowak B., and Gasenzer T. 2012. Critical dynamics of a twodimensional superfluid near a non-thermal fixed point. Phys. Rev. A, 86, 013624.
[164] Schmidt M., Erne S., Nowak B., Sexty D., and Gasenzer T. 2012. Nonthermal fixed points and solitons in a one-dimensional Bose gas. New J. Phys., 14, 075005.
[165] Karl M., Nowak B., and Gasenzer T. 2013. Tuning universality far from equilibrium. Sci. Rep., 3, 2394.
[166] Karl M., Nowak B., and Gasenzer T. 2013. Universal scaling at non-thermal fixed points of a two-component Bose gas. Phys. Rev. A, 88, 063615.
[167] Gasenzer T., McLerran L., Pawlowski J. M., and Sexty D. 2014. Gauge turbulence, topological defect dynamics, and condensation in Higgs models. Nucl. Phys., A930, 163.
[168] Ewerz C., Gasenzer T., Karl M., and Samberg A. 2015. Non-thermal fixed point in a holographic superfluid. J. High Energy Phys., 05, 070.
[169] Damle K., Majumdar S. N., and Sachdev S. 1996. Phase ordering kinetics of the Bose gas. Phys. Rev. A, 54, 5037.
[170] Bray A. J. 1994. Theory of phase-ordering kinetics. Adv. Phys., 43, 357.
[171] Connaughton C., Josserand C., Picozzi A., Pomeau Y., and Rica S. 2005. Condensation of classical nonlinear waves. Phys. Rev. Lett., 95, 263901.
[172] Aarts G., Bonini G. F., and Wetterich C. 2000. Exact and truncated dynamics in nonequilibrium field theory. Phys. Rev. D, 63, 025012.
[173] Berges J., Borsanyi S., and Wetterich C. 2004. Prethermalization. Phys. Rev. Lett., 93, 142002.
[174] Gring M., Kuhnert M., Langen T., Kitagawa T., Rauer B., Schreitl M., Mazets I., Adu Smith D., Demler E., and Schmiedmayer J. 2012. Relaxation and prethermalization in an isolated quantum system. Science, 337, 1318.
[175] Jaynes E. T. 1957a. Information theory and statistical mechanics. Phys. Rev., 106, 620.
[176] Jaynes E. T. 1957b. Information theory and statistical mechanics. II. Phys. Rev., 108, 171–190.
[177] Rigol M., Dunjko V., Yurovsky V., and Olshanii M. 2007. Relaxation in a completely integrable many-body quantum system: a. ab inito study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett., 98, 050405.
[178] Rigol M., Dunjko V., and Olshanii M. 2008. Thermalization and its mechanism for generic isolated quantum systems. Nature, 452, 854.
[179] Langen T., Erne S., Geiger R., Rauer B., Schweigler T., Kuhnert M., Rohringer W., Mazets I. E., Gasenzer T., and Schmiedmayer J. 2015. Experimental observation of a generalized Gibbs ensemble. Science, 348, 207.
[180] Nardin G., Lagoudakis K. G., Wouters M., Richard M., Baas A., André R., Dang L. S., Pietka B., and Deveaud-Plédran B. 2009. Dynamics of long-range ordering in an exciton-polariton condensate. Phys. Rev. Lett., 103, 256402.
[181] Belykh V. V., Sibeldin N. N., Kulakovskii V. D., Glazov M. M., Semina M. A., Schneider C., Höfling S., Kamp M., and Forchel A. 2013. Coherence expansion and polariton condensate formation in a semiconductor microcavity. Phys. Rev. Lett., 110, 137402.
[182] Lagoudakis K. G., Manni F., Pietka B., Wouters M., Liew T. C. H., Savona V., Kavokin A. V., André R., and Deveaud-Plédran B. 2011. Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett., 106, 115301.
[183] Klaers J., Schmitt J., Vewinger F., and Weitz M. 2010. Bose-Einstein condensation of photons in an optical microcavity. Nature, 468, 545.
[184] Demokritov S. O., Demidov V. E., Dzyapko O., Melkov G. A., Serga A. A., Hillebrands B., and Slavin A. N. 2006. Bose-Einstein condensation of quasiequilibrium magnons at room temperature under pumping. Nature, 443, 430.
[185] Berges J., Boguslavski K., Schlichting S., and Venugopalan R. 2015. Universality far from equilibrium: from superfluid Bose gases to heavy-ion collisions. Phys. Rev. Lett., 114, 061601.
[186] Berges J., Schenke B., Schlichting S., and Venugopalan R. 2014. Turbulent thermalization process in high-energy heavy-ion collisions. Nucl. Phys., A931, 348.
[187] Mace M., Schlichting S., and Venugopalan R. 2016. Off-equilibrium sphaleron transitions in the Glasma. Phys. Rev. D 93, 074036.